Published
Edited
Jun 23, 2022
2 stars
Insert cell
Insert cell
Insert cell
- Latent variable model
- collection of binary random variables coupled through soft constraints
- undirected graph
- Distributed representation
- Learn soft constraints between variables
- eg neighboring pixels in images probably have similar values
Insert cell
Insert cell
## Boltzmann machine
- Defines a probability distribution
- Probability of any joint distribution is log-linear in a **happiness function** *H*
Insert cell
${tex`
p(x) = \dfrac{1}{Z}\exp({H(x)})
`}
***
${tex`
Z = \displaystyle\sum_{x}\exp({H(x)})\\
\text{partition function}
`}
***
${tex`
H(x) = \displaystyle\sum_{i\not=j}w_{ij}x_{i}x_{j}+\sum_{i}b_{i}x_{i}\\
\text{happiness function, negation of energy}

`}
Insert cell
viewof Z = Inputs.range([0, 200], {
step: 0.01,
value: 172.42,
label: md`*Z*`
})
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
boltzmannCollection = {
return {
nodes: {
x1: {
group: 1,
bias: x1,
links: [
{ target: "x2", value: w12 },
{ target: "x3", value: w13 }
]
},
x2: {
group: 1,
bias: x2,
links: [
{ target: "x3", value: w23 },
{ target: "x2", value: 1 }
]
},
x3: { group: 1, bias: x3, links: [] }
},
links: [
{ source: "x1", target: "x2", value: w12 },
{ source: "x1", target: "x3", value: w13 },
{ source: "x2", target: "x3", value: w23 },
{ source: "x2", target: null, value: 1 }
]
};
}
Insert cell
// wijxixj
// w12x1x2
Object.keys(boltzmannCollection.nodes).map((i) =>
boltzmannCollection.nodes[i].links.map((j) => j.value)
)
Insert cell
Insert cell
R - https://en.m.wikipedia.org/wiki/Real_coordinate_space
Insert cell
tex`p(x)\\

x\sim p(x)~{\text{instance of our model}}\\

x\in\R^n
`
Insert cell
"The Boltzmann Machine defines a probability distribution over the set of possible visible binary vectors V and hidden binary vectors H. The intended analogy is that V is an observation, say the pixels on the retina, and H is the joint activity of all the neurons inside the brain. We’ll also denote the concatenation of V and H by X, so X=(V,H). The Boltzmann Machine defines a probability distribution over the configurations X=(V, H) by the equation

${tex`
P(X) = \cfrac{\exp({X^\top}WX/2)}{\sum_{X^\prime}\exp({X^{\prime\top}}WX^\prime/2)}
`}

So different choices of the matrix ${tex`W`} yield different distributions ${tex`P(X)`}
Insert cell

Purpose-built for displays of data

Observable is your go-to platform for exploring data and creating expressive data visualizations. Use reactive JavaScript notebooks for prototyping and a collaborative canvas for visual data exploration and dashboard creation.
Learn more