Published
Edited
Apr 13, 2021
Insert cell
md`# Google Monthly Baseline Results`
Insert cell
Insert cell
Insert cell
Insert cell
width = 800
Insert cell
Insert cell
Insert cell
input = new Uint8Array(await Files.buffer(binary))
Insert cell
wb = xlsx.read(input, {type: 'array'})
Insert cell
excel = wb.Sheets["Baseline"];
Insert cell
data = xlsx.utils.sheet_to_json(excel);
Insert cell
x = d3.scaleLinear()
.domain([0, 11])
.range([margin.left, width - margin.right])
Insert cell
y = d3.scaleLinear()
.domain([0, max]).nice()
.range([height - margin.bottom, margin.top])
Insert cell
import {Select} from "@observablehq/inputs"
Insert cell
Insert cell
height = 700
Insert cell
xAxis = g => g
.attr("transform", `translate(0,${height - margin.bottom})`)
.call(d3.axisBottom(x).tickFormat(d => dates[d]).tickSizeOuter(0).tickPadding(12))
Insert cell
uLookup = ({"G": "Gas", "E": "Electricity", "C": "Chilled Water", "S": "Steam", "H": "Gas"})
Insert cell
Insert cell
Insert cell
margin = ({top: 40, right: 20, bottom: 30, left: 40})
Insert cell
Insert cell
d3 = require("d3@^6.1")
Insert cell
_ = require('lodash@4.17.15/lodash.js').catch(() => window["_"])
Insert cell
dates = d3.timeMonth.range(new Date(2019, 0, 1), new Date(2019, 11, 30)).map(d3.timeFormat("%b"));
Insert cell
line = d3.line()
.defined(d => !isNaN(d))
.x((d, i) => x(i))
.y(d => y(d))
.curve(d3.curveCardinal.tension(0.5))
Insert cell
color = ({"S": {primary: "#D84315", secondary: "#FFAB91"},
"E": {primary: "#2a6d4d", secondary: "#89cda8"},
"G": {primary: "#750c00", secondary: "#e26e42"},
"C": {primary: "#00838F", secondary: "#80DEEA"},
"H": {primary: "#750c00", secondary: "#e26e42"}})
Insert cell
chroma = require('chroma-js')
Insert cell
serialize = {
const xmlns = "http://www.w3.org/2000/xmlns/";
const xlinkns = "http://www.w3.org/1999/xlink";
const svgns = "http://www.w3.org/2000/svg";
return function serialize(svg) {
svg = svg.cloneNode(true);
const fragment = window.location.href + "#";
const walker = document.createTreeWalker(svg, NodeFilter.SHOW_ELEMENT, null, false);
while (walker.nextNode()) {
for (const attr of walker.currentNode.attributes) {
if (attr.value.includes(fragment)) {
attr.value = attr.value.replace(fragment, "#");
}
}
}
svg.setAttributeNS(xmlns, "xmlns", svgns);
svg.setAttributeNS(xmlns, "xmlns:xlink", xlinkns);
const serializer = new window.XMLSerializer;
const string = serializer.serializeToString(svg);
return new Blob([string], {type: "image/svg+xml"});
};
}
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more