Published
Edited
May 18, 2021
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
// md`</br></br>
// ### Recommendations and Next Steps
// Coming soon!</br></br>`
Insert cell
Insert cell
line = d3.line()
// .defined(d => !isNaN(d))
.curve(d3.curveBundle.beta(1))
.x((d, i) => distribution_x(distribution_data.costs[i]))
.y(d => distribution_y(d))
Insert cell
distribution_x = d3.scaleLinear()
.domain(d3.extent(distribution_range))
.range([distribution_margin.left, distribution_dimensions.width - distribution_margin.right]).nice()
Insert cell
distribution_margin = ({top: 70, right: 20, bottom: 60, left: 30})
Insert cell
distribution_dimensions = ({width: 960, height: 550})
Insert cell
distribution_xAxis = g => g
.attr("transform", `translate(0,${distribution_dimensions.height - distribution_margin.bottom})`)
.call(d3.axisBottom(distribution_x).tickPadding(6).ticks(20, ".1s"))
.call(g => g.append("text")
.attr("x", distribution_dimensions.width - 10)
.attr("y", 45)
.attr("fill", "currentColor")
.attr("text-anchor", "end")
.text("Minimum Cost Savings ($)"))
Insert cell
distribution_y = d3.scaleLinear()
.domain([0, 1])
.range([distribution_dimensions.height - distribution_margin.bottom, distribution_margin.top]).nice()
Insert cell
color(rate_selection)
Insert cell
distribution_yAxis = g => g
.attr("transform", `translate(${distribution_margin.left},0)`)
.call(d3.axisLeft(distribution_y).tickPadding(6).ticks(10, "%"))
.call(g => g.select(".domain").remove())
.call(g => g.append("text")
.attr("x", -distribution_margin.left - 10)
.attr("y", distribution_margin.top - 25)
.attr("fill", "currentColor")
.attr("text-anchor", "start")
.text(distribution_data.y))
Insert cell
distribution_grid = g => g
.attr("stroke", "currentColor")
.attr("stroke-opacity", 0.1)
.call(g => g.append("g")
.selectAll("line")
.data(distribution_y.ticks())
.join("line")
.attr("y1", d => 0.5 + distribution_y(d))
.attr("y2", d => 0.5 + distribution_y(d))
.attr("x1", distribution_margin.left)
.attr("x2", distribution_dimensions.width - distribution_margin.right));
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
color = d => d3.scaleOrdinal(rates, ["#be4579", "#89cda8", "#fcd404", "#3b99a7", "#e26e42", "#c59fca"])(d)
Insert cell
Insert cell
Insert cell
grid = g => g
.attr("stroke", "currentColor")
.attr("stroke-opacity", 0.1)
.call(g => g.append("g")
.selectAll("line")
.data(scatterplot_x.ticks())
.join("line")
.attr("x1", d => 0.5 + scatterplot_x(d))
.attr("x2", d => 0.5 + scatterplot_x(d))
.attr("y1", scatterplot_margin.top)
.attr("y2", scatterplot_dimensions.height - scatterplot_margin.bottom))
.call(g => g.append("g")
.selectAll("line")
.data(scatterplot_y.ticks())
.join("line")
.attr("y1", d => 0.5 + scatterplot_y(d))
.attr("y2", d => 0.5 + scatterplot_y(d))
.attr("x1", scatterplot_margin.left)
.attr("x2", scatterplot_dimensions.width - scatterplot_margin.right));
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
scatterplot_yAxis = g => g
.attr("transform", `translate(${scatterplot_margin.left},0)`)
.call(d3.axisLeft(scatterplot_y).tickPadding(6).ticks(20, ".1s"))
.call(g => g.select(".domain").remove())
.call(g => g.append("text")
.attr("x", -scatterplot_margin.left)
.attr("y", scatterplot_margin.top - 25)
.attr("fill", "currentColor")
.attr("text-anchor", "start")
.text(data.y))
Insert cell
Insert cell
distribution_legend = g => {
const svg = g
.attr("transform", `translate(${distribution_dimensions.width - distribution_margin.right},10)`)
.attr("font-family", "sans-serif")
.attr("font-size", 12)
.attr("text-anchor", "start");
const item = svg
.selectAll("g")
.data(["BATTERY + PV", "PV ONLY"])
.join("g")
.attr("transform", (d, i) => `translate(0,${i * 25})`);
item.each(function(d, i) {
d3.select(this).append("text")
.attr("fill", "#c1c1c1")
.attr("x", -110)
.attr("dy", "0.35em")
.text(String);
d3.select(this).append("circle")
.attr("fill", i === 0 ? color(rate_selection): "#c6c6c6")
.attr("stroke-width", 0)
.attr("r", 4)
.attr("cx", -125)
.attr("cy", 0);
});
}

Insert cell
Insert cell
grouped = {
let dat = data.filter(d => d.rate === rate_selection);
let grouped = _.groupBy(dat, d => d.id);
for (const group in grouped) {
grouped[group] = {
base: quartiles(grouped[group], "base_cost"),
ppa: quartiles(grouped[group], "ppa_with_battery_cost")
}
}
for (const bid in bids) {
let k = `${bid}PPA`
let d = dat.filter(d => d.id.substr(0, 2) === bid);
grouped[k] = {
base: quartiles(d, "base_cost"),
ppa: quartiles(d, "ppa_pv_only_cost")
}
}
return Object.entries(grouped).sort((a, b) => b[1].ppa[2] - a[1].ppa[2]);
}
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more