Public
Edited
Oct 23, 2023
Paused
3 forks
Importers
28 stars
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
navio(embeddings.map(d => d.data), {attribWidth: 2, height: 600})
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
computeEmbeddings && DOM.download(new Blob(
[JSON.stringify(embeddings_computed)],
{type: "application/json"}
), "embeddings.json", "Download Embeddings")
Insert cell
Insert cell
viewof embeddings_computed = {
if (computeEmbeddings) {
const before = performance.now();
restart;
const values = [];
const bar = progress({ interval: 50, invalidation });
yield bar;
let i =0;
for (let row of sample) {
values.push(
await extractor(embeddingAccessor(row), {
pooling: "mean",
normalize: true
})
);
await bar.progress(i++, sample.length);
// console.log("i", i);
}
console.log("progress completed in", performance.now() - before);
bar.resolve(values);
} else {
// Not computing embeddgins, return nothing
yield pleaseEnableComputeEmbeddings();
}
}
Insert cell
Insert cell
function pleaseEnableComputeEmbeddings() {
return Object.assign(htl.html`Please enable compute embeddings`, {
value: []
});
}
Insert cell
sample = selected
Insert cell
Insert cell
embeddings = {
if (computeEmbeddings) {
return embeddings_computed;
} else {
return embeddings_cached;
}
}
Insert cell
embeddings_cached = FileAttachment("embeddings_v2.json").json().then(res => {
for (let row of res)
row.data = new Float32Array(Array.from(Object.values(row.data)));
return res;
})

Insert cell
embeddingAccessor = (d) =>
// [d.paper_type].join("\n\n")
computeEmbeddingsUsing.map(a => d[a]).join("\n\n")
Insert cell
papersHighlighted = drSelection.drag
? dataToPlot.filter(
(d) =>
d.x >= drSelection.drag.x[0] &&
d.x <= drSelection.drag.x[1] &&
d.y >= drSelection.drag.y[0] &&
d.y <= drSelection.drag.y[1]
)
: dataToPlot
Insert cell
vegaScatterPlot = {
let chart = vl
.markCircle({ size: 100 })
.encode(
vl.x().fieldQ("x").axis(null),
vl.y().fieldQ("y").axis(null),
vl.color().fieldN(colorBy)
)
.width(Math.max(320, width - 150))
.height(500)
.data(dataToPlot);

// console.log("vega spec interactive =", interactive);

if (interactive) {
// console.log("vega interactive!", interactive);
const hover = vl
.selectPoint("hover")
.nearest(true)
.on("mouseover,pointerover,click,pointerup")
.init({ x: [], y: [] });
const drag = vl
.selectInterval("drag")
.init({ x: [], y: [] });

chart = chart
.params(hover, drag)
.encode(
vl.stroke().if(hover, vl.value("black")).value(null),
vl.size().if(vl.or(hover, drag), vl.value(100)).value(50),
vl.tooltip([
"title",
"paper_type_name",
"event_title",
"session_title",
"abstract"
])
);
}

return chart;
}
Insert cell
reducerResult = Generators.observe(
worker(
function* dr({ method, data, parameters }) {
yield* self.druid[method].generator(data, {}); // show the steps
},
{
method: druid_method,
data: embeddings.map((row) => row.data),
parameters: reducerParams
},
`
importScripts(${JSON.stringify(
await require.resolve("@saehrimnir/druidjs@^0.7.3")
)});
`
)
)
Insert cell
dataToPlot = sample.map((row, id) => ({
...row,
x: reducerResult[id][0],
y: reducerResult[id][1]
}))
Insert cell
create_parameter_form = (dr_method) => {
switch (dr_method) {
case "ISOMAP":
case "LLE":
case "LTSA":
return html`<form>
<label><input name="neighbors" type="range" min=10 max=300 value=10 /> neighbors <i>neighbors</i></label>
</form>`;
break;
case "SAMMON":
return html`<form>
<label><input name="magic" type="range" min=0 max=1 value=0.1 step=0.1 /> magic <i>magic</i></label>
</form>`;
break;
case "TSNE":
return html`<form>
<label><input name="perplexity" type="range" min=2 max=100 value=50 /> <i>perplexity</i></label><br>
<label><input name="epsilon" type="range" min=1 max=100 value=5 /> <i>epsilon</i></label>
</form>`;
break;
case "UMAP":
return html`<form>
<label><input name="n_neighbors" type="range" min=2 max=100 value=20 /> number of neighbors <i>n_neighbors</i></label><br>
<label><input name="min_dist" type="range" min=0.05 max=1.5 step=.05 value=0.1 /> minimum distance <i>min_dist</i></label>
</form>`;
break;
case "TriMap":
return html`<form>
<label><input name="weight_adj" type="range" min=100 max=100000 value=100 /> scaling factor <i>weight_adj</i></label><br>
<label><input name="c" type="range" min=1 max=10 value=5 /> number of triplets multiplier <i>c</i></label>
</form>`;
break;
case "LSP":
return html`<form>
<label><input name="neighbors" type="range" min=10 max=300 value=30 /> number of neighbors to consider <i>k</i></label><br>
<label><input name="control_points" type="range" min=10 max=100 value=20 /> number of controlpoints <i>control_points</i></label>
</form>`;
break;
case "LDA":
return html`<form>
<label>
<select name="clusters">
<option value="islands">islands</option>
<option value="species">species</option>
</select>
<i>class labels</i>
</form>`;
break;
default:
return html`<form>
${dr_method} has no parameters!
</form>`;
break;
}
}
Insert cell
druid = "🤯" // placeholder for Observable to allow the *dr* function to exist; the worker uses importScripts
Insert cell
import {conditionalShow} from "@john-guerra/conditional-show"
Insert cell
import {vegaSelected} from "@john-guerra/vega-selected"
Insert cell
import { worker } from "@fil/worker"
Insert cell
import { form } from "@mbostock/form-input"
Insert cell
import {FacetedSearch} from "@john-guerra/faceted-search"
Insert cell
import {progress} from "@mootari/displaying-progress"
Insert cell
import {navio} from "@john-guerra/navio"
Insert cell
import {vl} from "@john-guerra/vega-lite-api-v5"
Insert cell
transformers = import("https://cdn.jsdelivr.net/npm/@xenova/transformers@2.6.0")
Insert cell
Insert cell
extractor = await transformers.pipeline(
"feature-extraction",
"Xenova/all-MiniLM-L6-v2",

// "allenai/specter2",
{ quantized: false }
)
Insert cell
dicPapers = FileAttachment("paper_list_ieeevis_2023_from_github@1.json")
.json()
// .then((res) =>
// Array.from(Object.entries(res)).map(([UID, d]) => {
// d.UID = UID;
// d.time_stamp_parsed = new Date(d.time_stamp);
// d.thumb = `https://ieeevis.b-cdn.net/vis_2023/paper_images_small/${d.UID}.png`;
// return d;
// })
// )
Insert cell
papers = FileAttachment("papers_vis2023@2.json")
.json()
.then((res) =>
res.map((d) => {
d.time_stamp_parsed = new Date(d.time_stamp);
d.thumb = `https://ieeevis.b-cdn.net/vis_2023/paper_images_small/${d.UID}.png`;
d.url = `https://content.ieeevis.org/year/2023/paper_${d.UID}.html`
// Override any attributes with the original values from github
// This is for getting the actual abstract
return Object.assign(d, dicPapers[d.UID]);
})
)
Insert cell
Insert cell
// embeddings2 = {
// const before = performance.now();

// const res = await Promise.all(
// sample.map((row) =>
// extractor(embeddingAccessor(row), {
// pooling: "mean",
// normalize: true
// })
// )
// );

// console.log("completed in", performance.now() - before);
// return res;
// }
Insert cell
// Generators.observe((notify) => {
// const before = performance.now();
// const res = [];
// notify(res);
// sample.map((row, i) => {
// extractor(embeddingAccessor(row), {
// pooling: "mean",
// normalize: true
// }).then((rowRes) => {
// console.log("got result ", i)
// res.push(rowRes);

// if (res.length> sample.length-1)
// console.log("Generator duration", performance.now()-before);
// notify(res);
// });
// });
// })
Insert cell
// {
// const plt = Plot.plot({
// marginTop: 50,
// marginBottom: 50,
// inset: 50,
// width: width,
// height: width,
// marks: [
// Plot.image(dataToPlot, {
// x: "x",
// y: "y",
// src: (x) => x.thumb1,
// width: 50,
// title: "x"
// }),
// Plot.tip(
// dataToPlot,
// Plot.pointer({
// stroke: "paper_type",

// // channels: { Note: "Note", sport: "sport" },

// x: "x",
// y: "y",
// title: embeddingAccessor
// })
// )
// ]
// });
// const selection = d3.select(plt);
// selection.on("mousemove", (evt) => {
// const tipdata = plt.value;
// if (tipdata) {
// const image = selection.select(`image[href='${tipdata.thumb1}']`);
// image.raise();
// }
// });

// return plt;
// }
Insert cell
// // Plot viz

// projection = {
// const projection = await Plot.plot({
// marginTop: 10,
// inset: 10,
// color: {
// // scheme: "Paired",
// legend: true,
// columns: 3
// },
// legend: {
// marginTop: 50
// },
// width: width,
// height: 400,
// x: {axis: null},
// y: {axis: null},
// marks: [
// Plot.dot(dataToPlot, {
// x: "x",
// y: "y",
// fill: colorBy,
// r: 5,
// opacity: 0.8
// // strokeWidth: 4,
// // stroke: "Category"
// }),
// Plot.tip(
// dataToPlot,
// Plot.pointer({
// stroke: "paper_type",

// // channels: { Note: "Note", sport: "sport" },

// x: "x",
// y: "y",
// title: embeddingAccessor
// })
// )
// ]
// });

// Array.from(projection.querySelectorAll("svg")).map(ele => ele.style.overflow="visible");
// console.log( projection.querySelectorAll("svg"));
// return projection;
// }
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more