Published
Edited
Feb 14, 2021
Importers
9 stars
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
table_bits = 5
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
pj_to_float = {
const clz = Math.clz32;
const INF = 2**31;

// Set up a typed array for a 64-bit float, and a view as 2 32-bit integers.
const flt_arr = new Float64Array(1);
const int_arr = new Int32Array(flt_arr.buffer);

const HI = little_endian;
const MANTISSA_MASK = 0x000fffff; // 0000 0000 0000 1111 1111 1111 1111 1111

return function pj_to_float(pj) {
// special case infinity and zero
if (!(pj << 1)) return (pj === 0) ? 0 : Infinity;

// sign: 0 if positive, 1 if negative
const sign = pj >>> 31;

// take absolute value of p, shift left by 1
pj = ((pj - sign) ^ (-sign)) << 1;

// get the sign of the "regime bits", the unary exponent of a pj number
// 1 means exponent >= 0, 0 means exponent < 0
const exp_sign = pj >>> 31;

// count the regime bits
const leading_bits = clz(pj ^ (-exp_sign));

// store a float with the correct mantissa in the typed array
flt_arr[0] = 0x40000000 + ((pj << leading_bits << 1) >>> 2);

// fix the sign and exponent of that float
const exponent = 1023 + (exp_sign * leading_bits << 1) - leading_bits - exp_sign;
int_arr[HI] = (sign << 31) + (exponent << 20) + (int_arr[HI] & MANTISSA_MASK);

return flt_arr[0];
}
}
Insert cell
pj_with_nbits = (PJ_SIZE) => {
// Set up a typed array for 2 64-bit floats, and also a view of it as 4 32-bit
// integers. Use the first float for the input value, and the second for an
// appropriately scaled power of 2 to subtract then add to the value float
// to round it to the appropriate bit
const flt_arr = new Float64Array([0, 1]);
const int_arr = new Int32Array(flt_arr.buffer);

const SIGN_MASK = 0x7fffffff; // 0111 1111 1111 1111 1111 1111 1111 1111
const EXP_MASK = 0x7ff00000; // 0111 1111 1111 0000 0000 0000 0000 0000

// HI = 1 on little endian platforms, 0 on big-endian platforms.
const HI = little_endian, LO = 1 - little_endian;

// use these for rounding values near infinity
const LAST_POW2_CUTOFF = 2 ** (PJ_SIZE - 3) * Math.SQRT2;
const OVERFLOW_CUTOFF = 2 ** (PJ_SIZE - 1);

const INF = 2**31;

// use these in the rounding step
const HALF_EXP = 1022 << 20; // exponent for 0.5
const ROUND_EXP_OFFSET = HALF_EXP + ((56 - PJ_SIZE) << 20);

const float_to_pj = function float_to_pj(flt) {
// put the float into our typed array so we can extract its bits
flt_arr[0] = flt;

// eliminate sign
int_arr[HI] &= SIGN_MASK;

// special case for numbers near infinity
if (flt_arr[0] >= LAST_POW2_CUTOFF) {
if (flt_arr[0] >= OVERFLOW_CUTOFF) return INF;
const output_abs = ((INF >> (PJ_SIZE - 1)) - INF);
return output_abs * ((flt > 0) - (flt < 0));
}

// get exponent
const flt_exp = int_arr[HI] & EXP_MASK;

// round the number to the nearest pj-representable number, ties to even
int_arr[2+HI] = ROUND_EXP_OFFSET + (flt_exp > HALF_EXP) * ((flt_exp - HALF_EXP - 0x80000) << 1)
flt_arr[0] = (flt_arr[0] - flt_arr[1]) + flt_arr[1];

// get exponent again (might have changed after rounding)
const e = ((int_arr[HI] & EXP_MASK) >>> 20) - 1023;

// add 1 to small numbers, as we only want to extract the fraction part
flt_arr[0] += (e < 0);

// fetch 31 bits from the mantissa, put them into "pj"
let pj = (((int_arr[HI] << 12) >>> 1) + (int_arr[LO] >>> 21));

// if e > 0, shift to the right and add the appropriate 1s; make space for sign bit
pj = ((pj >>> ((e + 1) * (e >= 0))) + (INF >> e) * (e >= 0)) >>> 1;

// flip sign for negative input; negative pj numbers have a 2s complement representation
pj *= ((flt > 0) - (flt < 0));
return pj;
}
float_to_pj.inverse = pj_to_float;
return float_to_pj;
}
Insert cell
Insert cell
(1.5 - 2**53) + 2**53
Insert cell
(4.5 - 2**53) + 2**53
Insert cell
Insert cell
Insert cell
// Print binary digits of a 32-bit integer
i2b = (i) =>
("00000000000000000000000000000000"
+ (i >>> 0).toString(2)
).slice(-32)
Insert cell
exponent = {
const arr = new Float64Array(1);
const iarr = new Int32Array(arr.buffer);
const EMASK = 0x7ff00000; // 0111 1111 1111 0000 0000 0000 0000 0000

return (flt) => {
arr[0] = flt;
return ((iarr[1] & EMASK) >>> 20) - 1023;
}
}
Insert cell
sign = {
const arr = new Float64Array(1);
const iarr = new Int32Array(arr.buffer);
const SMASK = 0x80000000; // 0111 1111 1111 0000 0000 0000 0000 0000

return (flt) => {
arr[0] = flt;
return 1 - ((iarr[1] & SMASK) >>> 30);
}
}
Insert cell
mantissa = flt => (2**-32) * (1 << (32 - exponent(flt))) * flt
Insert cell
Insert cell
reverse_bits = {
const M1 = 0x55555555, M2 = 0x33333333, M4 = 0x0F0F0F0F, M8 = 0x00FF00FF;
return function reverse_bits(k) {
k = k>>>1 & M1 | (k & M1)<<1;
k = k>>>2 & M2 | (k & M2)<<2;
k = k>>>4 & M4 | (k & M4)<<4;
k = k>>>8 & M8 | (k & M8)<<8;
return k>>>16 | k<<16;
}
}
Insert cell
// count trailing zeros
ctrz = {
var clz = Math.clz32;
return function ctrz(k) {
// fill all bits to the left of the rightmost 1 bit with 1s
k |= k << 16, k |= k << 8, k |= k << 4, k |= k << 2, k |= k << 1;

// subtract count of leading 1s from 32
return 32 - clz(~k);
}
}
Insert cell
float32 = {
const arr = new Float32Array(1);
const iarr = new Int32Array(arr.buffer);
return function float32(k) {
iarr[0] = k;
return arr[0];
}
}
Insert cell
colors = ({
blue: '#0060ab',
red: '#993b3b'
})
Insert cell
Insert cell
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more