## Alternative Implementations
<table>
<tr><th>library</th>
<th>classification</th>
<th>regression</th>>
<th>support vector machines</th>
<th>decision trees</th>
<th>ensemble learning</th>
<th>neural networks</th>
</tr>
<tr><td>scicat-learn</td>
<td>SGDClassifier<br/> OneVsOneClassifier<br/> OneVsRestClassifier <br/>
KNeighborsClassifier</td>
<td>LinearRegression </br>SGDRegressor <br/> LogisticRegression</br>PolynomialFeatures </br>
Ridge </br> Lasso</br> ElasticNet</br> CatBoostRegressor</br> GaussianNB</br>
KernelRidge</br> ElasticNet</br> BayesianRidge</td>
<td>SVC</br> LinearSVC</br> SVR</td>
<td>DecisionTreeClassifier</td>
<td>RandomForestClassifier</br >VotingClassifier</br> GradientBoostingClassifier</br>
LGBMClassifier</br> CatBoostClassifier</br> XGBClassifier<br/>
LGBMRegressor</br> CatBoostRegressor</br> XGBRegressor</td>
</tr>
<tr><td><a href='https://github.com/mmaul/clml'>clml</a></td>
</tr>
<tr><td><a href='https://github.com/melisgl/mgl'>mgl</a>: classification and neural networks from gabor melis</td><td/><td/><td/><td/><td/><td>programmatic definition and controlflow</td>
</tr>
</table>