Published
Edited
May 12, 2020
Fork of Choropleth
Insert cell
Insert cell
us
Insert cell
html `<svg height = 600 width = ${width}>
${topojson.feature(us, us.objects.counties).features.map(d => {
return `<path d = ${path(d)} style = "stroke:red"></path>`;
})}
</svg>`
Insert cell
basic_map = {
const svg = d3.create("svg")
.attr("width", width)
.attr("height", 600);
const paths = svg.selectAll("path").data(topojson.feature(us, us.objects.nation).features)
.join("path")
.style("stroke", "red")
.attr("fill", "none")
.attr("d", d => path(d));
return svg.node();
}
Insert cell
chart = {
const svg = d3.create("svg")
.attr("viewBox", [0, 0, 975, 610]);

svg.append("g")
.attr("transform", "translate(610,20)")
.append(() => legend({color, title: data.title, width: 260}));

svg.append("g")
.selectAll("path")
.data(topojson.feature(us, us.objects.counties).features)
.join("path")
.attr("fill", d => color(data.get(d.id)))
.attr("d", path)
.append("title")
.text(d => `${d.properties.name}, ${states.get(d.id.slice(0, 2)).name}
${format(data.get(d.id))}`);

// svg.append("path")
// .datum(topojson.mesh(us, us.objects.states, (a, b) => a !== b))
// .attr("fill", "none")
// .attr("stroke", "white")
// .attr("stroke-linejoin", "round")
// .attr("d", path);

return svg.node();
}
Insert cell
data = Object.assign(new Map(d3.csvParse(await FileAttachment("unemployment-x.csv").text(), ({id, rate}) => [id, +rate])), {title: "Unemployment rate (%)"})
Insert cell
color = d3.scaleQuantize([1, 10], d3.schemeBlues[9])
Insert cell
path = d3.geoPath()
Insert cell
format = d => `${d}%`
Insert cell
states = new Map(us.objects.states.geometries.map(d => [d.id, d.properties]))
Insert cell
us = FileAttachment("counties-albers-10m.json").json()
Insert cell
topojson = require("topojson-client@3")
Insert cell
d3 = require("d3@5")
Insert cell
import {legend} from "@d3/color-legend"
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more