Published
Edited
Apr 24, 2020
1 fork
8 stars
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
seed = Date.now()
Insert cell
n = 800
Insert cell
Insert cell
colorScale = scales.inferno
//colorScale = scales.procScale([0.29,0.47,0.08],[0.04,0.47,0.58],[0.01,0.94,0.2],[0.17,0.7,0.77])

Insert cell
Insert cell
svg`<svg width="${w}" height="${h}">
<defs>
${array(n).map(i => {
return `<linearGradient id="linegrad${i}" x1="0" y1="0" x2="1" y2="0">
<stop offset="0%" stop-color="${colorScale(random(.2))}"/>
<stop offset="100%" stop-color="${colorScale(random(.5, 1))}"/>
</linearGradient>`
}).join('\n')}

${array(n).map(i => {
const offset = random(10)
return `<filter id="shadow${i}" x="-50%" y="-50%" width="200%" height="200%">
<feOffset result="offOut" in="SourceGraphic" dx="${offset}" dy="${offset}" />
<feColorMatrix result = "matrixOut" in = "offOut" type = "matrix" values = "0.2 0 0 0 0 0 0.2 0 0 0 0 0 0.2 0 0 0 0 0 1 0"/>
<feGaussianBlur result="blurOut" in="matrixOut" stdDeviation="10" />
<feBlend in="SourceGraphic" in2="blurOut" mode="normal" />
</filter>`
}).join('\n')}

<mask id="Mask">
<rect x="0" y="0" width="${w}" height="${h}" fill="white" />
<rect x="${margin}" y="${margin}" width="${w - margin * 2}" height="${h - margin * 2}" fill="black" />
</mask>
</defs>

<rect x="0" y="0" width="${w}" height="${h}" fill="${colorScale(0)}" />

${shuffle(array(n)).map((index, j) => {
const y = -200 + (h + 400) / n * index
return `<path
opacity="0.8"
stroke="url(#linegrad${index})"
stroke-width="${random(5, 5 +(n-j)/2)}"
stroke-dasharray="${array(10).map(() => random() < .6 ? randInt(2, 400) : random(2, 20)).join(" ")}"
fill="none"
filter="url(#shadow${index})"
d="M -30 ${y} C ${w / 3} ${y + simplex.noise3D(w / 3 / noiseScale, y / noiseScale, seed) * h} ${w / 3 * 2} ${y + simplex.noise3D(w / 3 * 2/ noiseScale, (y-400) / noiseScale, seed) * h} ${w + 30} ${y-400}"
/>`
}).join('\n')}

<rect
x="0"
y="0"
width="${w}"
height="${h}"
stroke="none"
fill="black"
fill="${colorScale(0)}"
mask="url(#Mask)"
/>
${shuffle(array(40)).map((index, j) => {
const y = -200 + (h + 400) / n * randInt(100, n)
return `<path
opacity="0.8"
stroke="url(#linegrad${index})"
stroke-width="${random(5, 45)}"
stroke-dasharray="0 ${random(250, 350)} ${array(10).map(() => random() < .6 ? randInt(2, 400) : random(2, 20)).join(" ")}"
fill="none"
filter="url(#shadow${index})"
d="M -30 ${y} C ${w / 3} ${y + simplex.noise3D(w / 3 / noiseScale, y / noiseScale, seed) * h} ${w / 3 * 2} ${y + simplex.noise3D(w / 3 * 2/ noiseScale, (y-400) / noiseScale, seed) * h} ${w + 30} ${y-400}"
/>`
}).join('\n')}

<!--
<rect
x="0"
y="0"
width="${margin}"
height="${h}"
stroke="none"
fill="black"
/>
-->
<rect
x="0"
y="${h-margin}"
width="${w}"
height="${margin}"
stroke="none"
fill="black"
/>
</svg>`
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more