Published
Edited
Oct 26, 2019
Importers
Insert cell
md`# Grid Cells`
Insert cell
function createPaths(globalConfig, cellData, Nrow = 9) {
var cellsDisk = cellData.map( (d, flatIndex) => d3rect.rect(
{x: (d.flatIndex % Nrow) * globalConfig.dds[0][0] + globalConfig.bounds[0][0][0] + d.groupOffset,
y: Math.floor(d.flatIndex / Nrow) * globalConfig.dds[1][0] + globalConfig.bounds[1][0][0],
width: globalConfig.dds[0][0],
height: globalConfig.dds[1][0]}) );
var cellsMemory = cellData.map( d => d3rect.rect(
{x: d.x[0], y: d.y[0], width: d.width[0], height: d.height[0]}));
var cellsCyl = cellData.map( d => d3.arc()({
innerRadius: d.x[1],
outerRadius: d.x[1] + d.width[1],
startAngle: d.y[1],
endAngle: d.y[1] + d.height[1],
padAngle: 0.0}) );
return {'disk': cellsDisk, 'memory': cellsMemory, 'cyl': cellsCyl};
}
Insert cell
function defaultConfig(Ndims, bounds) {
// first dimension of bounds is the dimension, second is the variable
// so bounds[0] corresponds to i, bounds[1] to j, bounds[0][0] is x
// bounds[0][1] is r, bounds[0][0][0] is left, bounds[0][0][1] is right
var cfg = {Ndims: Ndims, width: [], dds: [], bounds: bounds};
Ndims.forEach( (nd, i) => {
cfg.width.push( bounds[i].map( v => (v[1] - v[0]) ) );
cfg.dds.push( bounds[i].map( v => (v[1] - v[0])/nd ) );
});
return cfg;
}
Insert cell
cfg = defaultConfig([6, 8], [ [ [-120.0, 120.0], [ 20.0, 200.0 ] ],
[ [-160.0, 160.0], [ 0.0, Math.PI ] ] ] );
Insert cell
function createCells(globalConfig, level, dims, levelIndex, groupOffset = 0) {
var dds = globalConfig.dds.map( v1 => v1.map( v2 => (v2 / (2**level)) ) );
var thisLeft = globalConfig.bounds.map( (v1, i) => v1.map( (v2, j) => (v2[0] + dds[i][j] * levelIndex[i] ) ));
var data = [];
d3.range(dims[1]).forEach(j => d3.range(dims[0]).forEach( i=> {
data.push({
flatIndex: i * dims[1] + j,
i: i,
j: j,
x: thisLeft[0].map( (l, n) => (i * dds[0][n] + l)),
y: thisLeft[1].map( (l, n) => (j * dds[1][n] + l)),
width: dds[0],
height: dds[1],
groupOffset: groupOffset
});
}));
return data;
}
Insert cell
rootGrid = createCells(cfg, 0, [6, 8], [0, 0], -220);
//generateCellData();
Insert cell
refinedData = {
var refinedData = [];
var refinedData = refinedData.concat(createCells(cfg, 1, [4, 8], [4, 2], 160));
return refinedData;
}
Insert cell
function ringermacherMead(A, B, N) {
return function(phi) {
return A / Math.log(B * Math.tan(phi / (2*N)));
}
}
Insert cell
kh = d3.json("https://gist.githubusercontent.com/matthewturk/660402b5a92aea58b3fc1ea0b59df06b/raw/edbd8f56f68dc55de8c9c1b220a3b8acf2e0935b/kh.json");
Insert cell
kelvinHelmholtzAMR = {
var kh_amr = await d3.json("https://gist.githubusercontent.com/matthewturk/660402b5a92aea58b3fc1ea0b59df06b/raw/e18376232b4dbdcec91fc29c7986d9d47115a75e/kh_amr.json");
var complexConfig = defaultConfig([32, 32], [ [ [0, 512.0], [ 20.0 + width/2, 200.0 ] ],
[ [0, 512.0], [ 0.0, Math.PI ] ] ] );
var cellData0 = createCells(complexConfig, 0, [32, 32], [0, 0], 0);
var cellData1 = createCells(complexConfig, 1, [64, 32], [0, 32], 0);
var cellData2 = createCells(complexConfig, 2, [64, 50], [32, 64], 0);
cellData0.forEach( d => { d.density = kh[d.j][d.i];
d.level = 0; } );
cellData1.forEach( d => { d.density = kh_amr[0]["density"][d.i][d.j + 32];
d.velocity_x = kh_amr[0]["velocity_x"][d.i][d.j + 32];
d.velocity_y = kh_amr[0]["velocity_y"][d.i][d.j + 32];
d.level = 1;
});
cellData2.forEach( d => { d.density = kh_amr[1]["density"][d.i + 32][d.j + 50];
d.velocity_x = kh_amr[1]["velocity_x"][d.i + 32][d.j + 50];
d.velocity_y = kh_amr[1]["velocity_y"][d.i + 32][d.j + 50];
d.level = 2;
});
// Remove overlapping data
cellData0 = cellData0.filter( c => {
var ind = [c.i * 2, c.j * 2];
var overlaps = ((ind[0] >= 0) && (ind[0] < 64) && (ind[1] >= 32) && (ind[1] < 64));
return !overlaps;
});
cellData1 = cellData1.filter( c => {
var ind = [c.i * 2, c.j * 2];
var overlaps = ((ind[0] >= 32) && (ind[0] < 96) && (ind[1] >= 64) && (ind[1] < 114));
return !overlaps;
});
var cellData = cellData0.concat(cellData1).concat(cellData2);
var cellPaths = createPaths(complexConfig, cellData, 10);
var tree = d3.quadtree().x(d=>d.x[0] + d.width[0]/2).y(d=>d.y[0] + d.height[0]/2).addAll(cellData);
return {'kh_amr': kh_amr, 'cellData': cellData, 'cellPaths': cellPaths, 'tree': tree};
}
Insert cell
galaxy0030 = d3.json("https://gist.githubusercontent.com/matthewturk/660402b5a92aea58b3fc1ea0b59df06b/raw/9098fe92388acd00c9c4f9c98140f82f4b34b83d/galaxy0030.json")
Insert cell
function findOverlappingNodesPoint(point, biggestCell, fn) {
function visitTree(node, x0, y0, x1, y1) {
if ( x0 > point[0] + biggestCell[0]/2 || x1 < point[0] - biggestCell[0]/2
|| y0 > point[1] + biggestCell[1]/2 || y1 < point[1] - biggestCell[1]/2 ) {
return true;
}
if (!node.length) do {
var d = node.data;
if ( (point[0] >= d.x[0]) && (point[0] <= d.x[0] + d.width[0])
&& (point[1] >= d.y[0]) && (point[1] <= d.y[0] + d.height[0]) ) {
fn(d);
};
} while (node = node.next);
}
return visitTree;
}
Insert cell
function findOverlappingNodesRect(extent, fn) {
function visitTree(node, x0, y0, x1, y1) {
if ( x0 > extent[1][0] || x1 < extent[0][0] || y0 > extent[1][1] || y1 < extent[0][1] ) {
return true;
}
if (!node.length) do {
var d = node.data;
if ( extent[0][0] < d.x[0] + d.width[0]/2 && extent[0][1] < d.y[0] + d.height[0]/2
&& extent[1][0] > d.x[0] + d.width[0]/2 && extent[1][1] > d.y[0] + d.height[0]/2 ) {
fn(d);
};
} while (node = node.next);
}
return visitTree;
}
Insert cell
d3 = require("d3@5");
Insert cell
d3rect = require("d3-rect");
Insert cell
flubber = require("flubber");
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more