Published
Edited
Apr 19, 2019
1 fork
17 stars
Insert cell
Insert cell
viewof gl = {
const canvas = DOM.canvas(width + 28, height);
canvas.style.margin = "0 -14px";
canvas.value = canvas.getContext("webgl", {depth: false});
return canvas;
}
Insert cell
fragmentShader = {
const shader = gl.createShader(gl.FRAGMENT_SHADER);
gl.shaderSource(shader, `
precision highp float;

uniform float iTime;

vec2 mod289(vec2 x) {
return x - floor(x * (1.0 / 289.0)) * 289.0;
}

vec3 mod289(vec3 x) {
return x - floor(x * (1.0 / 289.0)) * 289.0;
}

vec4 mod289(vec4 x) {
return x - floor(x * (1.0 / 289.0)) * 289.0;
}

vec3 permute(vec3 x) {
return mod289(((x*34.0)+1.0)*x);
}

vec4 permute(vec4 x) {
return mod289(((x*34.0)+1.0)*x);
}

vec4 taylorInvSqrt(vec4 r) {
return 1.79284291400159 - 0.85373472095314 * r;
}

float snoise(vec3 v) {
const vec2 C = vec2(1.0/6.0, 1.0/3.0) ;
const vec4 D = vec4(0.0, 0.5, 1.0, 2.0);

// First corner
vec3 i = floor(v + dot(v, C.yyy) );
vec3 x0 = v - i + dot(i, C.xxx) ;

// Other corners
vec3 g = step(x0.yzx, x0.xyz);
vec3 l = 1.0 - g;
vec3 i1 = min( g.xyz, l.zxy );
vec3 i2 = max( g.xyz, l.zxy );

// x0 = x0 - 0.0 + 0.0 * C.xxx;
// x1 = x0 - i1 + 1.0 * C.xxx;
// x2 = x0 - i2 + 2.0 * C.xxx;
// x3 = x0 - 1.0 + 3.0 * C.xxx;
vec3 x1 = x0 - i1 + C.xxx;
vec3 x2 = x0 - i2 + C.yyy; // 2.0*C.x = 1/3 = C.y
vec3 x3 = x0 - D.yyy; // -1.0+3.0*C.x = -0.5 = -D.y

// Permutations
i = mod289(i);
vec4 p = permute( permute( permute(
i.z + vec4(0.0, i1.z, i2.z, 1.0 ))
+ i.y + vec4(0.0, i1.y, i2.y, 1.0 ))
+ i.x + vec4(0.0, i1.x, i2.x, 1.0 ));

// Gradients: 7x7 points over a square, mapped onto an octahedron.
// The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294)
float n_ = 0.142857142857; // 1.0/7.0
vec3 ns = n_ * D.wyz - D.xzx;

vec4 j = p - 49.0 * floor(p * ns.z * ns.z); // mod(p,7*7)

vec4 x_ = floor(j * ns.z);
vec4 y_ = floor(j - 7.0 * x_ ); // mod(j,N)

vec4 x = x_ *ns.x + ns.yyyy;
vec4 y = y_ *ns.x + ns.yyyy;
vec4 h = 1.0 - abs(x) - abs(y);

vec4 b0 = vec4( x.xy, y.xy );
vec4 b1 = vec4( x.zw, y.zw );

//vec4 s0 = vec4(lessThan(b0,0.0))*2.0 - 1.0;
//vec4 s1 = vec4(lessThan(b1,0.0))*2.0 - 1.0;
vec4 s0 = floor(b0)*2.0 + 1.0;
vec4 s1 = floor(b1)*2.0 + 1.0;
vec4 sh = -step(h, vec4(0.0));

vec4 a0 = b0.xzyw + s0.xzyw*sh.xxyy ;
vec4 a1 = b1.xzyw + s1.xzyw*sh.zzww ;

vec3 p0 = vec3(a0.xy,h.x);
vec3 p1 = vec3(a0.zw,h.y);
vec3 p2 = vec3(a1.xy,h.z);
vec3 p3 = vec3(a1.zw,h.w);

//Normalise gradients
vec4 norm = taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3)));
p0 *= norm.x;
p1 *= norm.y;
p2 *= norm.z;
p3 *= norm.w;

// Mix final noise value
vec4 m = max(0.6 - vec4(dot(x0,x0), dot(x1,x1), dot(x2,x2), dot(x3,x3)), 0.0);
m = m * m;
return 42.0 * dot( m*m, vec4( dot(p0,x0), dot(p1,x1),
dot(p2,x2), dot(p3,x3) ) );
}

float snoise(vec2 v) {
const vec4 C = vec4(0.211324865405187, // (3.0-sqrt(3.0))/6.0
0.366025403784439, // 0.5*(sqrt(3.0)-1.0)
-0.577350269189626, // -1.0 + 2.0 * C.x
0.024390243902439); // 1.0 / 41.0
// First corner
vec2 i = floor(v + dot(v, C.yy) );
vec2 x0 = v - i + dot(i, C.xx);

// Other corners
vec2 i1;
//i1.x = step( x0.y, x0.x ); // x0.x > x0.y ? 1.0 : 0.0
//i1.y = 1.0 - i1.x;
i1 = (x0.x > x0.y) ? vec2(1.0, 0.0) : vec2(0.0, 1.0);
// x0 = x0 - 0.0 + 0.0 * C.xx ;
// x1 = x0 - i1 + 1.0 * C.xx ;
// x2 = x0 - 1.0 + 2.0 * C.xx ;
vec4 x12 = x0.xyxy + C.xxzz;
x12.xy -= i1;

// Permutations
i = mod289(i); // Avoid truncation effects in permutation
vec3 p = permute( permute( i.y + vec3(0.0, i1.y, 1.0 ))
+ i.x + vec3(0.0, i1.x, 1.0 ));

vec3 m = max(0.5 - vec3(dot(x0,x0), dot(x12.xy,x12.xy), dot(x12.zw,x12.zw)), 0.0);
m = m*m ;
m = m*m ;

// Gradients: 41 points uniformly over a line, mapped onto a diamond.
// The ring size 17*17 = 289 is close to a multiple of 41 (41*7 = 287)

vec3 x = 2.0 * fract(p * C.www) - 1.0;
vec3 h = abs(x) - 0.5;
vec3 ox = floor(x + 0.5);
vec3 a0 = x - ox;

// Normalise gradients implicitly by scaling m
// Approximation of: m *= inversesqrt( a0*a0 + h*h );
m *= 1.79284291400159 - 0.85373472095314 * ( a0*a0 + h*h );

// Compute final noise value at P
vec3 g;
g.x = a0.x * x0.x + h.x * x0.y;
g.yz = a0.yz * x12.xz + h.yz * x12.yw;
return 130.0 * dot(m, g);
}

float aastep(float threshold, float value) {
#ifdef GL_OES_standard_derivatives
float afwidth = length(vec2(dFdx(value), dFdy(value))) * 0.70710678118654757;
return smoothstep(threshold-afwidth, threshold+afwidth, value);
#else
return step(threshold, value);
#endif
}

float hue2rgb(float f1, float f2, float hue) {
if (hue < 0.0) hue += 1.0;
else if (hue > 1.0) hue -= 1.0;
float res;
if ((6.0 * hue) < 1.0) res = f1 + (f2 - f1) * 6.0 * hue;
else if ((2.0 * hue) < 1.0) res = f2;
else if ((3.0 * hue) < 2.0) res = f1 + (f2 - f1) * ((2.0 / 3.0) - hue) * 6.0;
else res = f1;
return res;
}

vec3 hsl2rgb(vec3 hsl) {
vec3 rgb;
if (hsl.y == 0.0) {
rgb = vec3(hsl.z); // Luminance
} else {
float f2;
if (hsl.z < 0.5) f2 = hsl.z * (1.0 + hsl.y);
else f2 = hsl.z + hsl.y - hsl.y * hsl.z;
float f1 = 2.0 * hsl.z - f2;
rgb.r = hue2rgb(f1, f2, hsl.x + (1.0/3.0));
rgb.g = hue2rgb(f1, f2, hsl.x);
rgb.b = hue2rgb(f1, f2, hsl.x - (1.0/3.0));
}
return rgb;
}

vec3 hsl2rgb(float h, float s, float l) {
return hsl2rgb(vec3(h, s, l));
}

vec3 halftone(vec3 texcolor, vec2 st, float frequency) {
float n = 0.1*snoise(st*200.0); // Fractal noise
n += 0.05*snoise(st*400.0);
n += 0.025*snoise(st*800.0);
vec3 white = vec3(n*0.2 + 0.97);
vec3 black = vec3(n + 0.1);

// Perform a rough RGB-to-CMYK conversion
vec4 cmyk;
cmyk.xyz = 1.0 - texcolor;
cmyk.w = min(cmyk.x, min(cmyk.y, cmyk.z)); // Create K
cmyk.xyz -= cmyk.w; // Subtract K equivalent from CMY

// Distance to nearest point in a grid of
// (frequency x frequency) points over the unit square
vec2 Kst = frequency*mat2(0.707, -0.707, 0.707, 0.707)*st;
vec2 Kuv = 2.0*fract(Kst)-1.0;
float k = aastep(0.0, sqrt(cmyk.w)-length(Kuv)+n);
vec2 Cst = frequency*mat2(0.966, -0.259, 0.259, 0.966)*st;
vec2 Cuv = 2.0*fract(Cst)-1.0;
float c = aastep(0.0, sqrt(cmyk.x)-length(Cuv)+n);
vec2 Mst = frequency*mat2(0.966, 0.259, -0.259, 0.966)*st;
vec2 Muv = 2.0*fract(Mst)-1.0;
float m = aastep(0.0, sqrt(cmyk.y)-length(Muv)+n);
vec2 Yst = frequency*st; // 0 deg
vec2 Yuv = 2.0*fract(Yst)-1.0;
float y = aastep(0.0, sqrt(cmyk.z)-length(Yuv)+n);

vec3 rgbscreen = 1.0 - 0.9*vec3(c,m,y) + n;
return mix(rgbscreen, black, 0.85*k + 0.3*n);
}

vec3 halftone(vec3 texcolor, vec2 st) {
return halftone(texcolor, st, 30.0);
}

void main() {
float n = snoise(vec3(gl_FragCoord.xy * 0.005, iTime / 2.0));
float h = 0.25 + n * 0.3 + mod(iTime / 10.0, 1.0);
float s = 0.65 - n * 0.1;
float l = 0.68 - n * 0.25;
gl_FragColor = vec4(halftone(hsl2rgb(h, s, l), gl_FragCoord.xy, 1.0 / 20.0), 1.0);
}
`);
gl.compileShader(shader);
if (gl.getShaderParameter(shader, gl.COMPILE_STATUS)) return shader;
throw new Error(gl.getShaderInfoLog(shader));
}
Insert cell
vertexShader = {
const shader = gl.createShader(gl.VERTEX_SHADER);
gl.shaderSource(shader, `
attribute vec2 a_vertex;

void main(void) {
gl_Position = vec4(a_vertex, 0.0, 1.0);
}
`);
gl.compileShader(shader);
if (gl.getShaderParameter(shader, gl.COMPILE_STATUS)) return shader;
throw new Error(gl.getShaderInfoLog(shader));
}
Insert cell
vertexBuffer = {
const buffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, buffer);
gl.bufferData(gl.ARRAY_BUFFER, Float32Array.of(-1, -1, +1, -1, +1, +1, -1, +1), gl.STATIC_DRAW);
return buffer;
}
Insert cell
program = {
const program = gl.createProgram();
gl.attachShader(program, vertexShader);
gl.attachShader(program, fragmentShader);
gl.linkProgram(program);
if (gl.getProgramParameter(program, gl.LINK_STATUS)) return program;
throw new Error(gl.getProgramInfoLog(program));
}
Insert cell
draw = {
const a_vertex = gl.getAttribLocation(program, "a_vertex");
const u_time = gl.getUniformLocation(program, "iTime");
gl.useProgram(program);
gl.bindBuffer(gl.ARRAY_BUFFER, vertexBuffer);
gl.enableVertexAttribArray(a_vertex);
gl.vertexAttribPointer(a_vertex, 2, gl.FLOAT, false, 0, 0);
while (true) {
const t = performance.now() / 1000;
gl.uniform1f(u_time, t);
gl.drawArrays(gl.TRIANGLE_FAN, 0, 4);
yield t;
}
}
Insert cell
height = 600
Insert cell

Purpose-built for displays of data

Observable is your go-to platform for exploring data and creating expressive data visualizations. Use reactive JavaScript notebooks for prototyping and a collaborative canvas for visual data exploration and dashboard creation.
Learn more