Published
Edited
Oct 21, 2018
7 stars
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
import {
chart as histogram,
margin as histogram_margin
} with {
histogram_height as height,
histogram_data as data,
histogram_x as x
} from "@mbostock/d3-histogram"
Insert cell
color = d3.scaleSequential(d3.interpolateSpectral).domain([data[0].date, data[data.length - 1].date])
Insert cell
function ramp(color, n = 512) {
const context = DOM.context2d(n, 1, 1);
const interpolate = d3.interpolateNumber(...color.domain());
for (let i = 0; i < n; ++i) {
context.fillStyle = color(interpolate(i / (n - 1)));
context.fillRect(i, 0, 1, 1);
}
return context.canvas;
}
Insert cell
histogram_data = data.map(d => d.date)
Insert cell
histogram_x = d3.scaleTime()
.domain([d3.timeYear(data[0].date), d3.timeYear.ceil(data[data.length - 1].date)])
.range([histogram_margin.left, width - histogram_margin.right])
Insert cell
histogram_height = 240
Insert cell
histogram_color = d3.select(histogram).selectAll("rect").attr("fill", d => color(d[0]))
Insert cell
data = {
const parseDate = d3.timeParse("%m/%d/%Y");
const projection = d3.geoAlbersUsa().scale(1280).translate([480, 300]);
const data = await d3.tsv("https://gist.githubusercontent.com/mbostock/4330486/raw/fe47cd0f43281cae3283a5b397f8f0118262bf55/walmart.tsv", d => {
const p = projection(d);
p.date = parseDate(d.date);
return p;
});
data.sort((a, b) => a.date - b.date);
return data;
}
Insert cell
us = {
const us = await d3.json("https://unpkg.com/us-atlas@1/us/10m.json");
us.objects.lower48 = {
type: "GeometryCollection",
geometries: us.objects.states.geometries.filter(d => d.id !== "02" && d.id !== "15")
};
return us;
}
Insert cell
topojson = require("topojson-client@3")
Insert cell
d3 = require("d3@5")
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more