Published
Edited
Jul 13, 2021
1 fork
Insert cell
Insert cell
Insert cell
dataset = "CTD"
Insert cell
bc = topojson.feature(BC_Midres, BC_Midres.objects.BC_Midres_latlng)
Insert cell
BC_Midres
Insert cell
clip = false
Insert cell
Insert cell
color = d3.scaleSequentialQuantile([...contours.map(d => d.value)], t =>
d3.interpolateRdYlGn(1 - Math.pow(0.01 + t, 1 / curve))
)
Insert cell
Insert cell
projection([p[0].longitude, p[0].latitude])
Insert cell
projection([p[0].longitude, p[0].latitude])
Insert cell
p[0].latitude
Insert cell
p = {
return dataset === "CTD"
? await d3.csv(
"https://gist.githubusercontent.com/Mbrownshoes/bea3b68601c5004145624bdb03eaa43e/raw/4ca68c36baa3a526c74f7a5f250d3ced0ba438c4/proflocations.csv",
d3.autoType
)
: await d3.csvParse(
await FileAttachment("ordereddata.csv").text(),
d3.autoType
);
}
Insert cell
// // convert to geojson
pointsGeo = p.map((d, i) => {
return {
id: i,
properties: {
...d
},
geometry: {
type: "Point",
coordinates: projection([d.longitude, d.latitude])
}
};
})
Insert cell
contour_data = pointsGeo.reduce((p, v) => {
// calculate the number of points based on the population data
const num_points = 1;
// create an array of that same value repeated to create stacked points tied to the data value
const array = new Array(num_points).fill(
v.geometry.coordinates,
0,
num_points
);
return [...p, ...array];
}, [])
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
viewof cellsize = Inputs.range([1, 10], {
step: 1,
value: 4,
label: "Cellsize"
})
Insert cell
contour = d3
.contourDensity()
.x(d => d[0])
.y(d => d[1])
.size([width, height])
.bandwidth(bandwith)
.thresholds(thresholds)
.cellSize(cellsize)
Insert cell
contours = contour(contour_data)
Insert cell
path = d3.geoPath(projection)
Insert cell
sphere = ({ type: "Sphere" })
Insert cell
md`
<br>
Contour map
`
Insert cell
// colour = d3
// .scaleSequential(function(t) {
// var tNew = Math.pow(t, 10);
// return d3.interpolateViridis(tNew);
// })
// .domain([0.024056261216234408, 1000])
Insert cell
url = (x, y, z) =>
`https://api.mapbox.com/styles/v1/mapbox/light-v10/tiles/${z}/${x}/${y}${
devicePixelRatio > 1 ? "@2x" : ""
}?access_token=pk.eyJ1IjoibWF0YnJvd25oYWthaSIsImEiOiJjanQ0cGlzYmQwMHNjNDNvNWVrODAyYWI5In0.kc6L3DX6mqjJlLbyxWDEzA
`
Insert cell
height = 600
Insert cell
initialCenter = [-123 - 40 / 60, 48 + 50 / 60]
Insert cell
initialScale = 4096
Insert cell
// 1 << 2
Insert cell
// feature = d3.json("https://gist.githubusercontent.com/mbostock/4090846/raw/07e73f3c2d21558489604a0bc434b3a5cf41a867/us.json").then(topology => topojson.feature(topology, topology.objects.states))
Insert cell
import { BC_Midres, states } with {} from '73c68590a6b8ba4c'
Insert cell
topojson = require("topojson-client@3")
Insert cell
d3 = require("d3@6", "d3-geo-projection@2")
Insert cell
// world = d3.json("https://unpkg.com/world-atlas@1/world/110m.json")
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more