Public
Edited
1 fork
Importers
19 stars
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
state_adjacencies = {
let postals = contiguous_states.features.map((o) => o.properties.postal);
let adjacency_indices = contiguous_states.features
.map((o, i) => o.properties.neighbors.map((j) => [i, j]))
.flat()
.filter((a) => a[0] < a[1]);
adjacency_indices = adjacency_indices.map((a) => ({
source: postals[a[0]],
target: postals[a[1]]
}));

return adjacency_indices;
}
Insert cell
// This map data comes from Natural Earth:
// https://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/cultural/ne_10m_admin_1_states_provinces.zip
// I used mapshaper.org to retain only the contiguous US, clip the results to our natural boundary,
// and export the results to TopoJSON.
// I went with Natural Earth in the first place, since it has lat/lon data for an interior point for each region.

contiguous_states = {
let contiguous_states = await (
await FileAttachment("contiguous_states3.json")
).json();
contiguous_states.objects.contiguous_states.geometries =
contiguous_states.objects.contiguous_states.geometries.filter(
(o) => o.properties.postal != "DC"
);
let adjacency_lists = topojson.neighbors(
contiguous_states.objects.contiguous_states.geometries
);
contiguous_states = topojson.feature(
contiguous_states,
contiguous_states.objects.contiguous_states
);
contiguous_states.features.forEach(function (o, i) {
o.properties.neighbors = adjacency_lists[i];
o.properties.color = four_coloring[o.properties.postal];
});
return contiguous_states;
}
Insert cell
// The adjacencies were computed with TopoJSON.neighbors in the construction of contiguous_states.
// After downloading that information, the colors were generated by NetworkX (https://networkx.org/)
// using the following code:

// import networkx as nx
//
// edges = [('WA','ID'),('WA','OR'),('ID','MT'),('ID','OR'),('ID','UT'),('ID','WY'),('ID','NV'),('MT','ND'),('MT','WY'),('MT','SD'),('ND','MN'),('ND','SD'),('MN','SD'),('MN','IA'),('MN','WI'),('MI','OH'),('MI','WI'),('MI','IN'),('OH','PA'),('OH','KY'),('OH','WV'),('OH','IN'),('PA','NY'),('PA','MD'),('PA','DE'),('PA','NJ'),('PA','WV'),('NY','VT'),('NY','NJ'),('NY','CT'),('NY','MA'),('VT','NH'),('VT','MA'),('NH','ME'),('NH','MA'),('AZ','CA'),('AZ','NM'),('AZ','UT'),('AZ','NV'),('CA','OR'),('CA','NV'),('NM','TX'),('NM','CO'),('NM','OK'),('TX','LA'),('TX','OK'),('TX','AR'),('LA','MS'),('LA','AR'),('MS','AL'),('MS','AR'),('MS','TN'),('AL','FL'),('AL','GA'),('AL','TN'),('FL','GA'),('GA','SC'),('GA','NC'),('GA','TN'),('SC','NC'),('NC','VA'),('NC','TN'),('VA','MD'),('VA','KY'),('VA','TN'),('VA','WV'),('MD','DE'),('MD','WV'),('CT','RI'),('CT','MA'),('RI','MA'),('OR','NV'),('UT','WY'),('UT','NV'),('UT','CO'),('WY','CO'),('WY','SD'),('WY','NE'),('CO','NE'),('CO','KS'),('CO','OK'),('SD','NE'),('SD','IA'),('NE','KS'),('NE','IA'),('NE','MO'),('KS','OK'),('KS','MO'),('OK','MO'),('OK','AR'),('IA','MO'),('IA','WI'),('IA','IL'),('MO','IL'),('MO','KY'),('MO','AR'),('MO','TN'),('WI','IL'),('IL','KY'),('IL','IN'),('KY','TN'),('KY','WV'),('KY','IN'),('AR','TN')]
// nodes = []
// for edge in edges:
// nodes.append(edge[0])
// nodes.append(edge[1])
// nodes = list(set(nodes))
// nodes.sort()
//
// G = nx.Graph()
// G.add_nodes_from(nodes)
// G.add_edges_from(edges)
// colors = nx.greedy_color(G)

four_coloring = ({
MO: 0,
TN: 1,
KY: 2,
AR: 2,
CO: 0,
IA: 1,
ID: 0,
NE: 2,
OK: 1,
PA: 0,
SD: 0,
WY: 1,
GA: 0,
IL: 3,
MA: 0,
NV: 1,
NY: 1,
OH: 1,
UT: 2,
VA: 0,
WV: 3,
AL: 2,
AZ: 0,
IN: 0,
KS: 3,
MD: 1,
MN: 2,
MS: 0,
MT: 2,
NC: 2,
NM: 2,
OR: 2,
TX: 0,
WI: 0,
CA: 3,
CT: 2,
LA: 1,
MI: 2,
ND: 1,
NH: 1,
VT: 2,
DE: 2,
FL: 1,
NJ: 2,
RI: 1,
SC: 1,
WA: 1,
ME: 0
})
Insert cell
global = ({ show: "states" })
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more