Public
Edited
Nov 14, 2022
16 stars
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
board_cnt = math.multiply(
math.ones(55),
math.pow(math.matrix(kings_matrix(8)), 7),
math.ones(55)
)
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
1.34 ** (8 * 9) / board_cnt
Insert cell
Insert cell
Insert cell
Insert cell
// Construct the adjacency matrix for the set of legal rows
// of length m with non-attacking kings.

function kings_matrix(m) {
let A = [
[1, 1, 1],
[1, 0, 0],
[1, 0, 0]
];
let B = [
[1, 1],
[1, 0]
];

if (m == 1) {
return B;
} else if (m == 2) {
return A;
} else {
for (let i = 0; i < m - 2; i++) {
let C = assemble(A, B);
B = Object.assign([], A);
A = Object.assign([], C);
}
return A;
}

function assemble(A, B) {
let a = Object.assign([], A);
let b1 = Object.assign([], B);
let b2 = Object.assign([], B);
let an = A.length;
let bn = B.length;
let z1 = d3.range(an - bn).map(() => d3.range(bn).map(() => 0));
b1 = b1.concat(z1);
let z2 = d3.range(bn).map(() => d3.range(an - bn).map(() => 0));
b2 = d3.zip(b2, z2).map((aa) => aa.flat());
let z = d3.range(bn).map(() => d3.range(bn).map(() => 0));

let top = d3.zip(a, b1).map((aa) => aa.flat());
let bot = d3.zip(b2, z).map((aa) => aa.flat());
return top.concat(bot);
}
}
Insert cell
// The kings matrix for a standard chessboard with rows of length 8
A8 = kings_matrix(8)
Insert cell
// Recursive construction of the set of all legal rows of length 8
rows = {
let extend1 = (s) => s + "1";
let extend2 = (s) => s + "1K";
let rows = [
["K", "1"],
["1K", "K1", "11"]
];

for (let i = 0; i < 6; i++) {
rows.push([rows[0].map(extend2), rows[1].map(extend1)].flat());
rows.shift();
}
return rows[1].reverse();
}
Insert cell
// A Map object that allows us to quickly grab how many kings are in
// row i of our list of rows.
king_count = new Map(
rows.map((s, i) => [i, s.match(/K/g) ? s.match(/K/g).length : 0])
)
Insert cell
// Function to compute the kings rows that may be placed
// adjacency to the ith kings row.
function adjacencies(i) {
let row = A8[i];
return row.map((v, i) => (v == 1 ? i : [])).flat();
}
Insert cell
function fibonacci(n) {
let a = 0;
let b = 1;
let c;

for (let i = 0; i < n; i++) {
c = a;
a = a + b;
b = c;
}

return a;
}
Insert cell
// The list of dominant eigenvalues of the kings matrices A_m
// for a few values of m
eigenvalues = d3.range(1, 12).map(eigs)
Insert cell
// Function to compute the dominant eigenvalues of the kings matrices
// using power iteration
function eigs(n) {
let A = kings_matrix(n);
let eigenvector = d3.range(A.length).map(() => 1);
for (let i = 0; i < 30; i++) {
eigenvector = math.multiply(A, eigenvector);
eigenvector = eigenvector.map((x) => x / eigenvector[0]);
}
eigenvector = math.multiply(A, eigenvector);
let eigenvalue = eigenvector[0];
return eigenvalue;
}
Insert cell
// Count vertices by valence
d3
.sort(
Array.from(
d3
.group(
A8.map((r) => d3.sum(r)),
(x) => x
)
.values()
).map((a, i) => ({
cnt: a.length,
valence: a[0]
})),
(a) => a.valence
)
.reverse()
Insert cell
// Number of adjacencies in the Kings graph
1 +
(A8.flat(2)
.map((i) => (i == 0 ? [] : 1))
.flat().length -
1) /
2
Insert cell
Insert cell
// Raster plot of the kings matrix A_m
function kings_matrix_plot(m, size = 400) {
let pts = kings_matrix(m)
.map((r, i) => r.map((v, j) => (v == 1 ? [j, i] : [])))
.flat()
.filter((a) => a.length > 0);

return Plot.plot({
x: { domain: [0, fibonacci(m + 2)], ticks: 0 },
y: { domain: [fibonacci(m + 2), 0] },
width: size,
height: size,
marks: [
Plot.rect(pts, {
x1: (d) => d[0],
y1: (d) => d[1],
x2: (d) => d[0] + 1,
y2: (d) => d[1] + 1
})
]
});
}
Insert cell
// Generate an image of the nth legal kings row of length 8
function row_pic(n) {
let row_pic = Plot.plot({
width: 800,
height: 100,
margin: 0,
x: { domain: [0, 8] },
y: { domain: [0, 1] },
marks: [
Plot.rect(d3.range(1, 10, 2), {
x1: (d) => d,
x2: (d) => d + 1,
y1: 0,
y2: 1,
fill: "#ddd",
stroke: "#ddd"
}),
Plot.line(
[
[0, 0],
[8, 0],
[8, 1],
[0, 1],
[0, 0]
],
{ stroke: "#ccc" }
)
]
});

let matches = rows[n].matchAll(/K/g);
let match_result = matches.next();
while (!match_result.done) {
d3.select(row_pic)
.append("g")
.attr(
"transform",
`translate(${row_pic
.scale("x")
.apply(match_result.value.index)}) scale(2.2)`
)
.append(() => svg`${king}`);
match_result = matches.next();
}

return row_pic;
}
Insert cell
// Use the main algorithm described here to generate a random, legal,
// 8x8 chessboard and return it in Forsyth–Edwards notation.
function random_kings_board_fen() {
let v = d3.randomInt(0, 55)();
let path = [v];
for (let i = 0; i < 7; i++) {
let choices = A8[v].map((x, i) => (x == 1 ? i : [])).flat();
v = choices[d3.randomInt(0, choices.length)()];
path.push(v);
}
return path.map((i) => rows[i]).join("/");
}
Insert cell
// Generate the image of a kings board, given its Forsyth–Edwards notation
function kings_board(fen, size) {
return chessboard(fen, {
size: size,
theme: {
labelColor: "white",
lightSquareFill: "#FFF",
darkSquareFill: "#DDD",
borderStroke: "#DDD"
}
});
}
Insert cell
// The custom thumbnail
{
let div = d3
.create("div")
.style("width", "640px")
.style("height", "400px")
.style("padding-top", "50px");
// .style("border", "solid 1px black");

let kb = await kings_board(random_kings_board_fen(), 320);
div
.append("div")
.style("display", "inline-block")
.append(() => kb);
div
.append("div")
.style("display", "inline-block")
.append(() => kings_matrix_plot(12, 320));

return div.node();
}
Insert cell
Insert cell
// Image from WikiMedia
// https://commons.wikimedia.org/wiki/Category:SVG_chess_pieces
king = (await (await FileAttachment("King.svg")).text()).slice(55)
Insert cell
// The images of the 8x8 chessboards are generated using Haris Lapiroff's chessboard function
import { chessboard } from "@harrislapiroff/chessboard"
Insert cell
math = require("mathjs")
Insert cell
tippy = require("tippy.js")
Insert cell
tippy_style = html`<link rel="stylesheet" href="${await require.resolve(
`tippy.js/themes/light-border.css`
)}">`
Insert cell
d3 = require("d3@7", "d3-graphviz@2")
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more