Published
Edited
Aug 12, 2021
Importers
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
input = {
let ctx = DOM.canvas(image.width, image.height).getContext("2d");
ctx.drawImage(image, 0, 0);
return {
data: ctx.getImageData(0, 0, image.width, image.height),
width: image.width,
height: image.height
};
}
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
viewof poses = Inputs.table(imagePoses, {
columns: ['score', 'keypoints'],
format: {
score: sparkbar(d3.max(imagePoses, d => d.score)),
keypoints: points => points.length,
},
required: true
})
Insert cell
md`### Pose Keypoints`
Insert cell
viewof keypoints = Inputs.table(poses[0].keypoints, {
columns: ['name', 'score', 'x', 'y'],
format: {
score: sparkbar(d3.max(imagePoses, d => d.score))
}
})
Insert cell
function sparkbar(max) {
return x => htl.html`<div style="
background: steelblue;
width: ${100 * x / max}%;
float: right;
padding-right: 3px;
box-sizing: border-box;
color: white;">${x.toLocaleString("en")}`
}
Insert cell
Insert cell
imagePoses = {
let poses = [];
switch (model) {
case "MoveNet":
return await detector.estimatePoses(input.data);
break;
case "PoseNet":
return await detector.estimatePoses(input.data, {
maxPoses: 5,
flipHorizontal: false,
scoreThreshold: 0.5,
nmsRadius: 20
});
break;
default:
return poses;
}
}
Insert cell
Insert cell
detector = await poseDetection.createDetector(model)
Insert cell
Insert cell
function markPoses(
input,
poses,
showLabels,
showFacePoints,
pointColor,
textColor
) {
const maxSize = Math.max(input.width, input.height);
const context = DOM.context2d(input.width, input.height, 1); //maxSize, maxSize, 1);
context.putImageData(input.data, 0, 0);
context.font = "16px _sans";
context.textBaseline = "top";
context.fillStyle = textColor;
context.strokeStyle = pointColor;
context.lineWidth = lineWidth;
if (poses) {
poses.forEach((pose) =>
drawPose(context, pose, showLabels, showFacePoints)
);
}
context.canvas.style.maxWidth = input.width; //'640px';
// context.canvas.style.maxHeight = `${Math.min(640, input.height)}px`;
return html`${context.canvas}`;
}
Insert cell
function drawPose(context, pose, showLabels, showFacePoints) {
if (pose.keypoints) {
// key points by name
const points = new Map();
pose.keypoints.map(point => points.set(point.name, point));
// draw pose lines: https://github.com/tensorflow/tfjs-models/tree/master/pose-detection#keypoint-diagram
drawLine(context, points.get('left_shoulder'), points.get('right_shoulder'));
drawLine(context, points.get('left_hip'), points.get('right_hip'));
// left arm
drawLine(context, points.get('left_shoulder'), points.get('left_elbow'));
drawLine(context, points.get('left_elbow'), points.get('left_wrist'));
// left side
drawLine(context, points.get('left_shoulder'), points.get('left_hip'));
// left leg
drawLine(context, points.get('left_hip'), points.get('left_knee'));
drawLine(context, points.get('left_knee'), points.get('left_ankle'));

// right arm
drawLine(context, points.get('right_shoulder'), points.get('right_elbow'));
drawLine(context, points.get('right_elbow'), points.get('right_wrist'));

// right side
drawLine(context, points.get('right_shoulder'), points.get('right_hip'));
// right leg
drawLine(context, points.get('right_hip'), points.get('right_knee'));
drawLine(context, points.get('right_knee'), points.get('right_ankle'));

// connect face points
if (showFacePoints) {
drawLine(context, points.get('right_ear'), points.get('right_eye'));
drawLine(context, points.get('right_eye'), points.get('nose'));
drawLine(context, points.get('nose'), points.get('left_eye'));
drawLine(context, points.get('left_eye'), points.get('left_ear'));
}
// draw points and text labels
pose.keypoints.forEach(point => drawPoint(context, point, showLabels, showFacePoints));
}
}
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more