Public
Edited
Nov 21
36 stars
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
data = ({
type: "FeatureCollection",
features: bertin
.merge(world, "ISO3_CODE", unhcr, "id")
.features.filter((d) => d.properties.refugees != undefined)
})
Insert cell
Insert cell
Insert cell
str = type == "Réfugiés"
? format(d3.sum(unhcr.map((d) => d[val]))) + " réfugiés dans les pays voisins"
: format(d3.sum(unhcr.map((d) => d[val]))) + " traversées de frontières"
Insert cell
txtleg = type == "Réfugiés"
? `Nombre
de personnes
ayant fuit
l'Ukraine
depuis le
24 février 2022.

Un point
représente
${onedot}
réfugiés
au 1er
novembre
2024`
: `Nombre
de personnes
ayant fuit
l'Ukraine
depuis le
24 février 2022.

Un point
représente
${onedot}
traversées
de frontière
au 1er
novembre
2024`
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more