Unlisted
Edited
Feb 24
7 forks
1 star
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Plot.plot({
marks: [
Plot.dot(penguins, {
x: "flipper_length_mm",
y: "body_mass_g",
opacity: 0.8,
fill: "culmen_length_mm",
r: 10,
mixBlendMode: "multiply",
tip: true,
symbol: "species"
})
]
})
Insert cell
Plot.plot({
marks: [
Plot.raster(penguins, {
x: "flipper_length_mm",
y: "body_mass_g",
interpolate: "random-walk",
fill: "species",
opacity: 0.8
}),
Plot.dot(penguins, {
x: "flipper_length_mm",
y: "body_mass_g",
fill: "species",
stroke: "white",
r: 5
})
]
})
Insert cell
Insert cell
Insert cell
Plot.plot({
color: {scheme: "Observable10"},
y: {tickFormat: "s", grid: true, domain: [0, 20000], ticks: 5},
marks: [
Plot.ruleY([0]),
Plot.areaY(industries, {x: "date", y: "unemployed", fill: "industry", tip: true})
]
})
Insert cell
Insert cell
import {us, power_plants} from "@observablehq/us-energy-mix-bubble-map-recreation"
Insert cell
states = topojson.feature(us, us.objects.states)
Insert cell
power_plants
Insert cell
Plot.plot({
r: { range: [0.5, 15] },
projection: "albers-usa",
color: { legend: true },
marks: [
Plot.geo(states, { fill: "#ccc", stroke: "white" }),
Plot.dot(power_plants, {
x: "longitude",
y: "latitude",
fill: "primary_source",
r: "total_capacity",
tip: true,
opacity: 0.8
})
]
})
Insert cell
Insert cell
Insert cell
viewof range = Inputs.range([0, 100], {label: "Amount", step: 1})
Insert cell
Plot.plot({
marks: [
Plot.dot(cars, {x: "power (hp)", y: "economy (mpg)", fill: d => d['power (hp)'], r: range})
]
})
Insert cell
Insert cell
viewof checkboxes = Inputs.checkbox(industries.map(d => d.industry), {label: "Select some", value: ["Manufacturing"], unique: true})
Insert cell
checkboxes
Insert cell
industries_sub = industries.filter(d => checkboxes.includes(d.industry))
Insert cell
Plot.plot({
marks: [
Plot.ruleY([0]),
Plot.lineY(industries_sub, {x: "date", y: "unemployed", stroke: "industry"})
]
})
Insert cell
Insert cell
viewof pickSource = Inputs.radio(power_plants.map(d => d.primary_source), {label: "Select one", value: "coal", unique: true})
Insert cell
Plot.plot({
r: { range: [0.5, 15] },
projection: "albers-usa",
color: { legend: true, range: ["gray", "red"]},
marks: [
Plot.geo(states, { fill: "#ccc", stroke: "white" }),
Plot.dot(power_plants, {
x: "longitude",
y: "latitude",
fill: d => d.primary_source === pickSource,
sort: {channel: "fill"},
r: "total_capacity",
tip: true,
opacity: 0.8
})
]
})
Insert cell
Insert cell
Insert cell
data = [{age: 1, wt: 5},
{age: 1.3, wt: 8 },
{age: 2.6, wt: 12.7},
{age: 3.5, wt: 14.1},
{age: 3.9, wt: 13.9},
{age: 4.7, wt: 15.2}]
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
y = d3
.scaleLinear()
.domain(d3.extent(data, (d) => d.wt))
.nice()
.range([height - marginBottom, marginTop])
Insert cell
x = d3
.scaleLinear()
.domain(d3.extent(data, (d) => d.age))
.nice()
.range([marginLeft, width - marginRight])
Insert cell
chart = {

// Create the container SVG.
const svg = d3.create("svg")
.attr("width", width)
.attr("height", height);

// Append a circle for each data point.
svg.append("g")
.selectAll("circle")
.data(data)
.join("circle")
.attr("cx", d => x(d.age))
.attr("cy", d => y(d.wt))
.attr("r", 10)
.attr("fill", "purple");

return svg.node();
}
Insert cell
chart2 = {
// Create the container SVG.
const svg = d3.create("svg").attr("width", width).attr("height", height);
const myColors = ["red", "orange", "purple", "teal", "black", "gray"];

svg
.selectAll("circle")
.data(data)
.join("circle")
.transition()
.duration(5000)
.delay((d, i) => i * 200)
.ease(d3.easeCubic)
.attr("cx", (d) => x(d.age))
.attr("cy", (d) => y(d.wt))
.attr("r", 10)
.attr("fill", (d, i) => myColors[i]);

// svg.append("g")
// .attr("transform", `translate(0,${height - marginBottom})`)
// .call(d3.axisBottom(x));

// svg.append("g")
// .attr("transform", `translate(${marginLeft},0)`)
// .call(d3.axisLeft(y));
return svg.node();
}
Insert cell
Insert cell
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more