Public
Edited
Feb 23, 2023
12 forks
Importers
9 stars
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
files
Insert cell
Insert cell
enrollment = files["college-enrollment"]
Insert cell
Insert cell
enrollmentTotal = enrollment.filter(d => d.category == "Total")
Insert cell
faculty = files["instructional-faculty"]
Insert cell
facultyTotal = faculty.filter(d => d.category == "Total")
Insert cell
Insert cell
Plot.plot({
marks: [
Plot.ruleY([0]),
Plot.lineY(enrollmentTotal, {
x: "year",
y: "value",
marker: "dot",
stroke: "steelblue"
}),
Plot.lineY(facultyTotal, {
x: "year",
y: "value",
marker: "dot",
stroke: "orange"
})
],
y: { type: "log" },
marginLeft: 70
})
Insert cell
Insert cell
Plot.plot({
caption: `${sentenceName(dataset)}`,
marks: [
Plot.dot(data, {
x: "year",
y: "name",
fill: "value",
stroke: "gray",
title: "value"
})
],
color: { scheme: "greens" },
y: { axis: "right" },
grid: true,
width,
marginRight: 400
})
Insert cell
dataset
Insert cell
Insert cell
function tidy(rows) {
// expects a CSV parsed with type: true and array: true
// we want to turn the "wide" table where each column is a year, into a tidy table where each row is a year and value pair
// there is a nested structure where categories are broken down into separate rows, so we parse them
const hierarchy = [];
const values = [];
const years = rows[0].slice(1);

// each row is a category (starting with the series total)
for (const row of rows.slice(1)) {
let name = row[0];
// null value indicates the end of the table (there are sources metadata below the null row)
if (!name) break;

// count the number of spaces to determine the depth
const depth = name.match(/^ */)[0].length / 4;
hierarchy[depth] = name.trim();
name = hierarchy
.slice(0, depth + 1)
.reverse()
.join(" / ");
const category = hierarchy.slice(1, depth).reverse().join(" / ") || "Total";

// grab all the values for the row (after the name)
const r = row.slice(1);
for (const [i, year] of years.entries()) {
const value = r[i];
if (value != null)
values.push({
name,
category,
series: hierarchy[0],
year: new Date(Date.UTC(+year, 0, 1)), // we convert the year as a number into a UTC Date
value
});
}
}

return values;
}
Insert cell
files = ({
"college-enrollment": tidy(
await FileAttachment("college_enrollment_usafacts.csv").csv({
typed: true,
array: true
})
),
"college-enrollment-rate": tidy(
await FileAttachment("college_enrollment_rate_usafacts.csv").csv({
typed: true,
array: true
})
),
"college-graduation-rate-2-year-institutions-within-3-years-by-starting-year":
tidy(
await FileAttachment(
"college_graduation_rate_at_twoyear_institutions_within_three_years_of_start_usafacts.csv"
).csv({ typed: true, array: true })
),
"college-graduation-rate-4-year-institutions-within-6-years-by-starting-year":
tidy(
await FileAttachment(
"college_graduation_rate_at_fouryear_institutions_within_six_years_of_start_usafacts.csv"
).csv({ typed: true, array: true })
),
"bachelors-degrees": tidy(
await FileAttachment("bachelors_degrees_conferred_usafacts.csv").csv({
typed: true,
array: true
})
),
"masters-degrees": tidy(
await FileAttachment("masters_degrees_conferred_usafacts.csv").csv({
typed: true,
array: true
})
),
"doctors-degrees": tidy(
await FileAttachment("doctors_degrees_usafacts.csv").csv({
typed: true,
array: true
})
),
"instructional-faculty": tidy(
await FileAttachment("instructional_faculty_usafacts.csv").csv({
typed: true,
array: true
})
),
"avg-higher-ed-instructional-full-time-faculty-salary": tidy(
await FileAttachment(
"average_fulltime_instructional_faculty_salary_usafacts.csv"
).csv({ typed: true, array: true })
),
"median-annual-earnings-of-workers-25-34-years-old-2016-dollars": tidy(
await FileAttachment(
"inflationadjusted_median_annual_earnings_of_fulltime_workers_aged_2534_usafacts.csv"
).csv({ typed: true, array: true })
),
"average-student-loan-awarded": tidy(
await FileAttachment("average_student_loan_awarded_usafacts.csv").csv({
typed: true,
array: true
})
),
"average-student-loan-awarded-inflation-adjusted": tidy(
await FileAttachment(
"average_student_loan_awarded_inflation_usafacts.csv"
).csv({ typed: true, array: true })
),
"stem-degrees-conferred-postsecondary-institutions": tidy(
await FileAttachment(
"stem_degrees_conferred_by_postsecondary_institutions_usafacts.csv"
).csv({ typed: true, array: true })
)
})
Insert cell
sentenceName = (name) => {
const sent = name.split("-").join(" ");
return sent[0].toUpperCase() + sent.slice(1);
}
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more