Public
Edited
Jan 9, 2023
2 forks
4 stars
Insert cell
Insert cell
Insert cell
Insert cell
WIDTH = Math.min(600, width)
Insert cell
HEIGHT = WIDTH
Insert cell
DURATION_MS = 6000
Insert cell
UNIT = WIDTH/6
Insert cell
A = [UNIT * 2, UNIT * 5]
Insert cell
B = [UNIT * 3, UNIT * 5.5]
Insert cell
α = -1
Insert cell
extent = 1000
Insert cell
Insert cell
d = [A[0] - B[0], A[1] - B[1]]
Insert cell
δ = Math.atan2(-d[0], d[1])
Insert cell
Insert cell
t = {
while (true) {
yield Math.sin(Date.now() / DURATION_MS * Math.PI);
}
}
Insert cell
ρ = Math.tan(t*1.3)
Insert cell
ρ_min = Math.tan(-1.3)
Insert cell
ρ_max = Math.tan(1.3)
Insert cell
l_min = (d[0]* ρ_min - d[1]) / α
Insert cell
l_mid = -d[1] / α
Insert cell
l_max = (d[0]* ρ_max - d[1]) / α
Insert cell
// Draw a segment of a parabola from (x0,y0) ending at (x2,y2),
// where the parabola we’re drawing a segment of is the unique
// parabola with a vertical axis that passes through all three
// points (x0,y0), (x1,y1) and (x2,y2).

function parabolaThrough(ct, x0,y0, x1,y1, x2,y2) {
// Lagrange interpolation & differentiate, to get the gradients of the tangents at (x0,y0) and (x2,y2)
const g0 = y0/(x0 - x1) + y0/(x0 - x2) + ((x0 - x2)*y1)/((-x0 + x1)*(x1 - x2)) + ((x0 - x1)*y2)/((-x0 + x2)*(x2 - x1));
const g2 = ((x2 - x1)*y0)/((x0 - x1)*(x0 - x2)) + ((x2 - x0)*y1)/((-x0 + x1)*(x1 - x2)) + y2/(x2 - x0) + y2/(x2 - x1);

// Tangent lines are:
// y - y0 = g0 (x - x0)
// y - y2 = g2 (x - x2)
// Subtracting:
// y2 - y0 = g0 (x - x0) - g2 (x - x2)
// => y2 - y0 + g0 x0 - g2 x2 = (g0 - g2) x
const x = (y2 - y0 + g0*x0 - g2*x2) / (g0 - g2);
const y = g0*(x - x0) + y0;

ct.moveTo(x0,y0);
ct.quadraticCurveTo(x,y, x2,y2);
}
Insert cell
{
const ct = canvas.ct;
const { sin, cos } = Math;

ct.clearRect(0, 0, WIDTH, HEIGHT);

// Find the point where the lines intersect
const l = (d[0]* ρ - d[1]) / α;
const X = [
B[0] - l,
B[1] - l*(ρ+α),
];

// Draw the parabola
ct.beginPath();
parabolaThrough(
ct,
B[0] - l_min, B[1] - l_min*(ρ_min+α),
B[0] - l_mid, B[1] - l_mid*α,
X[0], X[1], //B[0] - l_max, B[1] - l_max*(ρ_max+α)
);

ct.lineWidth = 2;
ct.strokeStyle = "#0c0";
//ct.stroke();

ct.lineTo(X[0], 0);
ct.fillStyle = "rebeccapurple";
ct.fill();

// Draw the lines
const a_distance = Math.sqrt(1 + ρ*ρ);
const b_distance = Math.sqrt(1 + (ρ+α)*(ρ+α));
ct.beginPath();
ct.moveTo(A[0] - extent / a_distance, A[1] - extent * ρ / a_distance);
ct.lineTo(A[0] + extent / a_distance, A[1] + extent * ρ / a_distance);

ct.moveTo(B[0] - extent / a_distance, B[1] - extent * (ρ+α) / a_distance);
ct.lineTo(B[0] + extent / a_distance, B[1] + extent * (ρ+α) / a_distance);

ct.lineWidth = 1;
ct.strokeStyle = "#999";
ct.stroke();

// Draw the intersection point
ct.beginPath();
ct.arc(X[0], X[1], 2, 0, 7);
ct.fillStyle = "#900";
ct.fill();
// Draw the chord
ct.beginPath();
ct.moveTo(A[0], A[1]);
ct.lineTo(B[0], B[1]);

ct.lineWidth = 1;
ct.strokeStyle = "blue";
ct.stroke();

// Endpoints of chord
ct.beginPath();
ct.arc(A[0], A[1], 5, 0, 7);
ct.arc(B[0], B[1], 5, 0, 7);
ct.fillStyle = "#333";
ct.fill();

return this || html`(<i>the drawing function</i>)`;
}
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more