Public
Edited
Sep 27, 2022
1 fork
Importers
Insert cell
Insert cell
Insert cell
Insert cell
chart= {
const svg= d3.create("svg").attr("viewBox", [0 , 0 , width, height])
const g= svg
.append("g")
.attr("class", "gDrawing")
.attr("transform", `translate( ${margin.left}, ${margin.top})`);

//append axxis
//append axis LABELS, require transform on axisLABEL again
// update on grouping
g.append("g")
.attr("class", "xAxis")
.attr("transform", `translate(0, ${height - margin.top - margin.bottom })`)
.append("text")
.attr("class", "axisLabel")
.style("fill", "black")
.attr("transform", `translate( ${width - margin.left - margin.right}, 30)`)
.style("text-anchor", "end");

g.append("g")
.attr("class", "yAxis")
.append("text")
.attr("transform", `translate(10, -20)`)
.attr("class", "axisLabel")
.style("fill", "black")
.style("text-anchor", "middle");

// AXIS labels
g.select(".xAxis")
.call(d3.axisBottom(x));
// .attr("transform", `translate(0, height- margin.top -margin.bottom`);

g.select(".yAxis")
.call(d3.axisLeft(y));

// CREATE BAR chart from GROUPED data
// GET x=> first element which is CATEGORICAL
// Y => length of the SECOND grouped element
// WIDTH of the Categorical values


/// INSTRUCTIONS:
// INFO: we create SERIES of groupings. Inside groupings we select every BAR
// 1. FIRST passing all STACKED data, passing `key` from the in-built ARRAY
// 2. SECOND data will be automatically nested dataset from the PARENT `.data(d => d)`
g.selectAll(".series")
.data(stacked_data)
.join("g")
.attr("class", "series")
.attr("fill", d=> color(d.key))
.selectAll(".bar")
.data( d=> d)
.join("rect")
.attr("class", "bar")
.attr("x", d => x(d.data[x_attr])) // select the first grouped element
.attr("width", x.bandwidth())
.attr("height", d => iheight - y(d[1] - d[0])) // from where it starts and ends
.attr("y", d => y(d[1])) // SELECT second element
// .style("fill", "steelblue");

// TEXT-VALUE
// g.selectAll(".value")
// .data(grouped_data)
// .join("text")
// .attr("class", "value")
// .attr("x", grp => x(grp[0] + x.bandwidth() / 2 )) // select the first grouped element
// .attr("y", grp => y(grp[1].length ) - 3)
// .text(gr => gr[1].length)
// .style("fill", "black");


return svg.node();
}
Insert cell
Insert cell
// Attribute from the data: Island
colorAttr= "Island"
Insert cell
color= d3.scaleOrdinal( d3.schemePastel1)
.domain(data.map( d=> d[colorAttr]))
Insert cell
Insert cell
iwidth= width - margin.left - margin.right
Insert cell
iheight= height - margin.top - margin.bottom
Insert cell
Insert cell
Insert cell
// requires pivot
tableData= groupToStack( data, x_attr, colorAttr)
Insert cell
Insert cell
stacked_data= d3.stack().keys(color.domain())(tableData)
Insert cell
Insert cell
grouped_data= d3.groups( data, d=> d[x_attr], d => d[colorAttr])
Insert cell
Insert cell
x.domain()
Insert cell
// x scale from x-attribute
x= d3.scaleBand()
//.domain([0, d3.max(data, d => d[x_attr])])
.domain( data.map(d => d[x_attr]))
.range([0, iwidth])
.padding(0.3)
Insert cell
y.domain()
Insert cell
Insert cell
y= d3.scaleLinear()
.domain([ 0, d3.max(stacked_data, d => d3.max(d, e => e[1]))]) // Retrieve the NESTED structure
.range([ iheight, 0])
.nice()
Insert cell
// test
y.domain()
Insert cell
y
Insert cell
Insert cell
attrs= Object.keys(data [0])
Insert cell
Insert cell
quant= attrs.filter( a => typeof data[0][a] === "number")
Insert cell
Insert cell
categorical= attrs.filter( y => data[0][y] !== "number")
Insert cell
Insert cell
x_attr= "Species"
Insert cell
Insert cell
y_attr= "Count"
Insert cell
margin= ({ left: 40, top: 20, bottom: 50, right: 20})
Insert cell
Insert cell
data= vegaData["penguins.json"]()
Insert cell
vegaData= require("vega-datasets@2")
Insert cell
height= 400
Insert cell
d3= require("d3@6")
Insert cell
import { slider, select } from "@jashkenas/inputs"
Insert cell
// IMPORT group stack
import { groupToStack } from "@john-guerra/d3-stack-with-d3-group"
Insert cell
// LEGEND
import { swatches } from "@d3/color-legend"
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more