Published
Edited
May 30, 2021
Insert cell
Insert cell
chart = {
const root = pack(data);

const svg = d3.create("svg")
.attr("viewBox", [0, 0, width, height])
.style("font", "10px sans-serif")
.attr("text-anchor", "middle");

const shadow = DOM.uid("shadow");

svg.append("filter")
.attr("id", shadow.id)
.append("feDropShadow")
.attr("flood-opacity", 0.3)
.attr("dx", 0)
.attr("dy", 1);

const node = svg.selectAll("g")
.data(d3.group(root.descendants(), d => d.height))
.join("g")
.attr("filter", shadow)
.selectAll("g")
.data(d => d[1])
.join("g")
.attr("transform", d => `translate(${d.x + 1},${d.y + 1})`);

node.append("circle")
.attr("r", d => d.r)
.attr("fill", d => color(d.height));

const leaf = node.filter(d => !d.children);
leaf.select("circle")
.attr("id", d => (d.leafUid = DOM.uid("leaf")).id);

leaf.append("clipPath")
.attr("id", d => (d.clipUid = DOM.uid("clip")).id)
.append("use")
.attr("xlink:href", d => d.leafUid.href);

leaf.append("text")
.attr("clip-path", d => d.clipUid)
.selectAll("tspan")
.data(d => d.data.name.split(/(?=[A-Z][a-z])|\s+/g))
.join("tspan")
.attr("x", 0)
.attr("y", (d, i, nodes) => `${i - nodes.length / 2 + 0.8}em`)
.text(d => d);

node.append("title")
.text(d => `${d.ancestors().map(d => d.data.name).reverse().join("/")}\n${format(d.value)}`);
return svg.node();
}
Insert cell
data = FileAttachment("output_LDA@1.json").json()
Insert cell
pack = data => d3.pack()
.size([width - 2, height - 2])
.padding(3)
(d3.hierarchy(data)
.sum(d => d.value)
.sort((a, b) => b.value - a.value))
Insert cell
width = 975
Insert cell
height = width
Insert cell
format = d3.format(",d")
Insert cell
color = d3.scaleSequential([0, 3], d3.interpolateBlues)
Insert cell
d3 = require("d3@6")
Insert cell
import {rasterize} from "@mbostock/saving-svg"
Insert cell
DOM.download(() => rasterize(chart), undefined, "Save as PNG")
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more