Public
Edited
Jul 2, 2024
1 star
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
class FirstOrderLI {
constructor(tau_rc=0.2, v_init=0) {
this.tau_rc = tau_rc;
this.v = v_init;
}

step(I, t_step) {
this.v = this.v * (1 - t_step/this.tau_rc) + (I * t_step / this.tau_rc);
}
}
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
// Note that v_init, tau_rc, and time_step are all declared outside of this cell
{
const NUM_STEPS = 2 / time_step; // Simulate for 2 seconds

// Create a neuron with initial voltage of v_init
const neuron = new FirstOrderLI(tau_rc, v_init);

// An array to track the times and potentials
const v_history = [ ];

// Loop through NUM_STEPS times
for(let i = 0; i < NUM_STEPS; i++) {
neuron.step(0, time_step); // First argument is 0 to specify I[t] = 0
v_history.push({ t: i*time_step, v: neuron.v }); // Append to the historical data
}

// Show line graph with
return Plot.line(v_history, {x: "t", y: "v"}).plot();
}
Insert cell
Insert cell
Insert cell
Insert cell
{
const TIME_STEP = 1e-3; // 0.001
const NUM_STEPS = 4 / TIME_STEP; // Simulate for 4 seconds

const I = step_func(1.1); // A function that is "on" for 8 seconds

const neuron = new FirstOrderLI(tau_rc1);

// An array to track the times, potentials, and inputs
const v_history = [ ];
for(let i = 0; i < NUM_STEPS; i++) {
const t = i*TIME_STEP;
const I_t = I(t);
neuron.step(I_t, TIME_STEP);
v_history.push({t, v: neuron.v, I: I_t });
}
return Plot.plot({
y: {
label: 'I'
},
marks: [
Plot.line(v_history, {x: "t", y: "I", stroke: "blue"}),
Plot.line(v_history, {x: "t", y: "v", stroke: "#AAA"})
],
});
}
Insert cell
Insert cell
Insert cell
class FirstOrderLIF {
constructor(tau_rc=0.2, v_init=0, tau_ref=0.002, v_th=1){
this.tau_rc = tau_rc;
this.tau_ref = tau_ref;
this.v = v_init;
this.v_th = v_th;
this.output = 0;
this.refractory_time = 0;
}

step(I, t_step) {
this.refractory_time -= t_step; // Subtract the amount of time thhat passed from our refractory time
if(this.refractory_time < 0) { // If we aren't in our refractory period, update the voltage
this.v = this.v * (1 - t_step/this.tau_rc) + (I * t_step / this.tau_rc);
}

if(this.v >= this.v_th) { // Fired
this.refractory_time = this.tau_ref; // Set refractory time

this.output = 1 / t_step; // Fire
this.v = 0; // Reset potential
} else {
this.output = 0; // Don't fire
}
return this.output;
}
}
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
{
const TIME_STEP = 1e-3; // 0.001
const NUM_STEPS = 15 / TIME_STEP; // Simulate for 15 seconds

const I = mul(step_func(4, 5), 1.2); // A function that is "on" for 8 seconds

const neuron = new FirstOrderLIF(tau_rc2, 0, tau_ref, v_th);

// An array to track the times, potentials, and inputs
const v_history = [ ];
for(let i = 0; i < NUM_STEPS; i++) {
const t = i*TIME_STEP;
const I_t = I(t);
neuron.step(I_t, TIME_STEP);
v_history.push({t, v: neuron.v, I: I_t, output: neuron.output*TIME_STEP*0.1, v_th: neuron.v_th });
}
return Plot.plot({
y: {
label: 'I'
},
marks: [
Plot.line(v_history, {x: "t", y: "v_th", stroke: "#AAA", strokeDasharray: "5 5", strokeWidth: 0.5 }),
Plot.line(v_history, {x: "t", y: "output", stroke: "red", strokeWidth: 7}),
Plot.line(v_history, {x: "t", y: "I", stroke: "blue"}),
Plot.line(v_history, {x: "t", y: "v", stroke: "#AAA"}),
],
});
}
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
class FirstOrderLIF1 {
constructor(tau_rc=0.2, v_init=0, tau_ref=0.002, v_th=1){
this.tau_rc = tau_rc;
this.tau_ref = tau_ref;
this.v = v_init;
this.v_th = v_th;
this.output = 0;
this.refractory_time = 0;
}

step(I, t_step) {
this.refractory_time -= t_step; // Subtract the amount of time thhat passed from our refractory time
const old_v = this.v;
if(this.refractory_time < 0) { // If we aren't in our refractory period, update the voltage
this.v = this.v * (1 - t_step/this.tau_rc) + (I * t_step / this.tau_rc);
}

if(this.v >= this.v_th) { // Fired
// vvv CHANGED vvv
const spike_time = (this.tau_rc * (this.v_th - this.v) + t_step * (I - this.v_th)) / (I - this.v); // When did the neuron actually spike
this.refractory_time = this.tau_ref + spike_time;
// ^^^ CHANGED ^^^
this.output = 1 / t_step; // Fire
this.v = 0; // Reset potential
} else {
this.output = 0; // Don't fire
}
return this.output;
}
}
Insert cell
Insert cell
class FirstOrderLIF2 {
constructor(tau_rc=0.2, v_init=0, tau_ref=0.002, v_th=1){
this.tau_rc = tau_rc;
this.tau_ref = tau_ref;
this.v = v_init;
this.v_th = v_th;
this.output = 0;
this.refractory_time = 0;
}

step(I, t_step) {
this.refractory_time -= t_step;
// vvvvvvv CHANGED vvvvvvv
let delta_t = t_step - this.refractory_time; // How much time passed where we can actually accept input?
if (delta_t < 0 ) { delta_t = 0; } // Make sure it's not negative
if (delta_t > t_step) { delta_t = t_step; } // Make sure it's not greater than our time step
// ^^^^^^^ CHANGED ^^^^^^^
this.v = this.v * (1 - delta_t/this.tau_rc) + (I * delta_t / this.tau_rc); // CHANGED: Note that we use delta_t rather than t_step

if(this.v >= this.v_th) { // Fired
const spike_time = (this.tau_rc * (this.v_th - this.v) + t_step * (I - this.v_th)) / (I - this.v); // When did the neuron actually spike
this.refractory_time = this.tau_ref + spike_time;
this.output = 1 / t_step; // Fire
this.v = 0; // Reset potential
} else {
this.output = 0; // Don't fire
}
return this.output;
}
}
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
class AnalyticalLIF {
constructor(tau_rc=0.2, v_init=0, tau_ref=0.002, v_th=1){
this.tau_rc = tau_rc;
this.tau_ref = tau_ref;
this.v = v_init;
this.v_th = v_th;
this.output = 0;
this.refractory_time = 0;
}

step(I, t_step) {
this.refractory_time -= t_step;
let delta_t = t_step - this.refractory_time; // How much time passed where we can actually accept input?
if (delta_t < 0 ) { delta_t = 0; } // Make sure it's not negative
if (delta_t > t_step) { delta_t = t_step; } // Make sure it's not greater than our time step
// vvvvvvv CHANGED vvvvvvv
this.v = I + (this.v - I) * Math.exp(-delta_t/this.tau_rc);
// ^^^^^^^ CHANGED ^^^^^^^
if(this.v >= this.v_th) { // Fired
// vvvvvvv CHANGED vvvvvvv
const spike_time = delta_t + this.tau_rc * Math.log((this.v-I)/(this.v_th-I));
// ^^^^^^^ CHANGED ^^^^^^^

this.refractory_time = this.tau_ref + spike_time;

this.output = 1 / t_step; // Fire
this.v = 0; // Reset potential
} else {
this.output = 0; // Don't fire
}
return this.output;
}
}
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more