Published
Edited
Jun 9, 2020
4 forks
Insert cell
Insert cell
x = d3.scalePoint(attributes, [margin.left, width - margin.right])
Insert cell
Insert cell
y = {
let scales = new Map();

attributes.forEach(function(attribute) {
//only attribute origin is ordinal data and needs a different scale
if (attribute == "origin"){
scales.set(
attribute,
//https://observablehq.com/@sophiegri/exercise-2-scatterplot-matrix
//d3.extent gets min and max value of the given attribute
//3 attributes for origin so axis needs to be cut in half
d3.scaleOrdinal().range([height - margin.bottom, height/2, margin.top])
.domain(d3.extent(data, item => item[attribute]))
);
}
else {
scales.set(
attribute,
//d3.extent gets min and max value of the given attribute
d3.scaleLinear().range([height - margin.bottom, margin.top])
.domain(d3.extent(data, item => item[attribute]))
);
}
});

return scales;
}
Insert cell
Insert cell
Insert cell
Insert cell
//https://observablehq.com/@sophiegri/exercise-2-scatterplot-matrix
color = d3.scaleOrdinal(d3.schemeTableau10)
Insert cell
Insert cell
Insert cell
paracoords = {
const svg = d3.create("svg").attr("viewBox", [0, 0, width, height]);

// set the style of hidden data items
svg
.append("style")
.text("path.hidden { stroke: #000; stroke-opacity: 0.01;}");

// a map that holds any active brush per attribute
let activeBrushes = new Map();

const polylines = svg
.append("g")
.attr("fill", "none")
.attr("stroke-width", 1.5)
.attr("stroke-opacity", 0.4)
.selectAll("path")
.data(data)
.join("path")
//paint the polylines
//https://observablehq.com/@sophiegri/exercise-2-scatterplot-matrix
.attr("stroke", d => color(d[colorAttribute]))
//set the lines
//https://observablehq.com/@d3/parallel-coordinates
.attr("d", d => d3.line()
.defined(([, value]) => value != null)
.y(([key, value]) => y.get(key)(value))
.x(([key]) => x(key))
(d3.cross(attributes, [d], (key, d) => [key, d[key]])));

// create the group nodes for the axes
const axes = svg
.append("g")
.selectAll("g")
.data(attributes)
.join("g")
.attr("transform", d => `translate(${x(d)},0)`)
//https://observablehq.com/@d3/parallel-coordinates
//set axis to the right and set the text
.each(function(d) { d3.select(this).call(d3.axisRight(y.get(d))); })
.call(g => g.append("text")
//position of the text
.attr("x", -1)
.attr("y", 7.5)
.attr("text-anchor", "start")
.attr("fill", "currentColor")
//.get(d) gets the short name (value) from the Map shortAttributeNames
.text(d => shortAttributeNames.get(d)));

function updateBrushing() {
var number_brushes = activeBrushes.size;
if (number_brushes == 0) {
//false is colored, true is hidden
polylines.classed("hidden", d => {return false});
}
else {
polylines.classed("hidden", d => {
var return_value = false;
//iterate over Map and get y-values
activeBrushes.forEach((value, key) => {
var y0 = value[0];
var y1 = value[1];
//check if car value is inside an active brush
var value_y = y.get(key)(d[key]);
if (value_y <= y1 && value_y >= y0) {
}
else {
return_value=true;
}
});
//variable to see the active polylines in this scope
return return_value;
});
}
}

function brushed(attribute) {
activeBrushes.set(attribute, d3.event.selection);
updateBrushing();
}

function brushEnd(attribute) {
if (d3.event.selection !== null) return;
activeBrushes.delete(attribute);
updateBrushing();
}

const brushes = axes.append("g").call(
d3
.brushY()
.extent([[-10, margin.top], [10, height - margin.bottom]])
.on("brush", brushed)
.on("end", brushEnd)
);

return svg.node();
}
Insert cell
md`## Appendix`
Insert cell
height = 500
Insert cell
margin = ({ top: 10, right: 30, bottom: 10, left: 10 })
Insert cell
data = d3.csvParse(await FileAttachment("cars.csv").text(), d3.autoType)
Insert cell
attributes = data.columns.filter(d => d !== "name")
Insert cell
shortAttributeNames = new Map(
Object.entries({
mpg: "MPG",
cylinders: "CYL",
displacement: "DPL",
horsepower: "HP",
weight: "WGT",
acceleration: "ACL",
year: "YEAR",
origin: "OGN"
})
)
Insert cell
import { select } from "@jashkenas/inputs"
Insert cell
d3 = require("d3@5")
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more