Published
Edited
Oct 24, 2020
1 fork
24 stars
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
magnifiedAzimuthalEquidistant = function () {
return magnifiedAzimuthalMutator(magnifiedAzimuthalEquidistantRaw);
}
Insert cell
magnifiedAzimuthalEqualArea = function () {
return magnifiedAzimuthalMutator(magnifiedAzimuthalEqualAreaRaw);
}
Insert cell
function taperedAzimuthalEquidistant() {
return magnifiedAzimuthalMutator(taperedAzimuthalEquidistantRaw);
}
Insert cell
function taperedAzimuthalEqualArea() {
return magnifiedAzimuthalMutator(taperedAzimuthalEqualAreaRaw);
}
Insert cell
function taperedStereographic() {
return magnifiedAzimuthalMutator(taperedStereographicRaw);
}
Insert cell
function taperedGnomic() {
return magnifiedAzimuthalMutator(taperedGnomicRaw);
}
Insert cell
function magnifiedAzimuthalEquidistantRaw(b1, b2, n) {
const g = b1 * (1 - n) / (n * (b2 - b1)),
q = b1 * (1 - g);
function pSinZ(z) {
return z <= b1
? z / Math.sin(z)
: (q + g * z) / Math.sin(z);
}
return magnifiedAzimuthalFactory(pSinZ);
}
Insert cell
function magnifiedAzimuthalEqualAreaRaw(b1, b2, n) {
const g = (1 - n * n) * (1 - Math.cos(b1)) / (n * n * (Math.cos(b1) - Math.cos(b2))),
q = 1 - (1 - g) * Math.cos(b1);
function pSinZ(z) {
return z <= b1
? Math.SQRT2 * Math.sqrt(1 - Math.cos(z)) / Math.sin(z)
: Math.SQRT2 * Math.sqrt(q - g * Math.cos(z)) / Math.sin(z);
}
return magnifiedAzimuthalFactory(pSinZ);
}
Insert cell
function taperedAzimuthalEquidistantRaw(b1, b2, n) {
const dB = b2 - b1,
n0 = b1 / b2;
if (n >= 1) n = 1 - 0.0001;
if (n <= n0) n = n0 + 0.0001;
const g = dB / (b2 - b1 / n);
function pSinZ(z) {
return z <= b1
? z / Math.sin(z)
: (z - dB * Math.pow((z - b1) / dB, g) / g) / Math.sin(z);
}
return magnifiedAzimuthalFactory(pSinZ);
}
Insert cell
function taperedAzimuthalEqualAreaRaw(b1, b2, n) {

const G = 2 * Math.tan(b1 / 2),
dB = b2 - b1,
n0 = G / (G + dB);
if (n >= 1) n = 1 - 0.0001;
if (n <= n0) n = n0 + 0.0001;
const g = dB / (dB + (1 - 1 / n) * G),
C = G + dB * (1 - 1 / g),
R = C * Math.cos(b1 / 2),
RC = R / C;
function pSinZ(z) {
return z <= b1
? 2 * Math.sin(z / 2) / Math.sin(z)
: RC * (G + z -b1 - dB * Math.pow((z - b1) / dB, g) / g) / Math.sin(z);
}
return magnifiedAzimuthalFactory(pSinZ);
}
Insert cell
function taperedStereographicRaw(b1, b2, n) {
const {sin, cos, acos, pow, tan} = Math;
const G = sin(b1),
dB = b2 - b1,
n0 = G / (G + dB);
if (n >= 1) n = 1 - 0.0001;
if (n <= n0) n = n0 + 0.0001;
const g = dB / (dB + (1 - 1 / n) * G),
C = G + dB * (1 - 1 / g),
R = C / (cos(b1 / 2) * cos(b1 / 2)),
RC = R / C;
function pSinZ(z) {
return pSinZ = z <= b1
? 2 * tan(z / 2) / sin(z)
: RC * (G + z -b1 - dB * pow((z - b1) / dB, g) / g) / sin(z);
}
return magnifiedAzimuthalFactory(pSinZ);
}
Insert cell
taperedGnomicRaw = (b1, b2, n) => {

const G = Math.sin(b1) * Math.cos(b1),
dB = b2 - b1,
n0 = G / (G + dB);
if (n >= 1) n = 1 - 0.0001;
if (n <= n0) n = n0 + 0.0001;
const g = dB / (dB + (1 - 1 / n) * G),
C = G + dB * (1 - 1 / g),
R = C / (Math.cos(b1) * Math.cos(b1)),
RC = R / C;
function pSinZ(z) {
return z <= b1
? Math.tan(z) / Math.sin(z)
: RC * (G + z -b1 - dB * Math.pow((z - b1) / dB, g) / g) / Math.sin(z);
}
return magnifiedAzimuthalFactory(pSinZ);
}
Insert cell
function magnifiedAzimuthalMutator(raw) {
const rad = Math.PI / 180,
deg = 180 / Math.PI,
epsilon = 1e-4;
let b1 = 30 * rad,
b2 = 120 * rad,
n = 0.5;
const mutate = d3.geoProjectionMutator(raw);
const projection = mutate(b1, b2, n);
projection.innerRadius = function(inner) {
if (!arguments.length) return b1 * deg;
b1 = Math.max(epsilon, Math.min(90 - epsilon, inner)) * rad;
if (b1 > b2) { let tmp = b1; b1 = b2, b2 = tmp; }
if (b1 === b2) b2 += epsilon;
mutate(b1, b2, n);
return projection.clipAngle(b2 * deg);
}
projection.outerRadius = function(outer) {
if (!arguments.length) return b1 * deg;
b2 = Math.max(epsilon, Math.min(180 - epsilon, outer)) * rad;
if (b1 > b2) { let tmp = b1; b1 = b2, b2 = tmp; }
if (b1 === b2) b2 += epsilon;
mutate(b1, b2, n);
return projection.clipAngle(b2 * deg);
}
projection.ratio = function(ratio) {
if (!arguments.length) return ratio;
n = Math.max(0, Math.min(1, ratio));
mutate(b1, b2, n);
return projection;
}
return projection.clipAngle(b2 * deg);
}
Insert cell
function magnifiedAzimuthalFactory(cb) {
let cosPhi, z, cosZ, pSinZ;
return function(lambda, phi) {
cosPhi = Math.cos(phi), cosZ = cosPhi * Math.cos(lambda), z = Math.acos(cosZ);
if (z === 0) return [0, 0];
if (z === Math.PI) return [Math.cos(lambda), Math.sin(phi)]; // I think
pSinZ = cb(z);
return [
pSinZ * cosPhi * Math.sin(lambda),
pSinZ * Math.sin(phi)
];
}
}
Insert cell
Insert cell
magnifiedAzimuthal = projections[projection]()
.innerRadius(inner)
.outerRadius(outer)
.ratio(ratio)
.rotate([-rotation[0], -rotation[1]])
.translate([width / 2, height / 2])
.fitExtent([[padding, padding], [width - padding, height - padding]], sphere)

Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell

Purpose-built for displays of data

Observable is your go-to platform for exploring data and creating expressive data visualizations. Use reactive JavaScript notebooks for prototyping and a collaborative canvas for visual data exploration and dashboard creation.
Learn more