Published
Edited
1 fork
24 stars
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
magnifiedAzimuthalEquidistant = function () {
return magnifiedAzimuthalMutator(magnifiedAzimuthalEquidistantRaw);
}
Insert cell
magnifiedAzimuthalEqualArea = function () {
return magnifiedAzimuthalMutator(magnifiedAzimuthalEqualAreaRaw);
}
Insert cell
function taperedAzimuthalEquidistant() {
return magnifiedAzimuthalMutator(taperedAzimuthalEquidistantRaw);
}
Insert cell
function taperedAzimuthalEqualArea() {
return magnifiedAzimuthalMutator(taperedAzimuthalEqualAreaRaw);
}
Insert cell
function taperedStereographic() {
return magnifiedAzimuthalMutator(taperedStereographicRaw);
}
Insert cell
function taperedGnomic() {
return magnifiedAzimuthalMutator(taperedGnomicRaw);
}
Insert cell
function magnifiedAzimuthalEquidistantRaw(b1, b2, n) {
const g = b1 * (1 - n) / (n * (b2 - b1)),
q = b1 * (1 - g);
function pSinZ(z) {
return z <= b1
? z / Math.sin(z)
: (q + g * z) / Math.sin(z);
}
return magnifiedAzimuthalFactory(pSinZ);
}
Insert cell
function magnifiedAzimuthalEqualAreaRaw(b1, b2, n) {
const g = (1 - n * n) * (1 - Math.cos(b1)) / (n * n * (Math.cos(b1) - Math.cos(b2))),
q = 1 - (1 - g) * Math.cos(b1);
function pSinZ(z) {
return z <= b1
? Math.SQRT2 * Math.sqrt(1 - Math.cos(z)) / Math.sin(z)
: Math.SQRT2 * Math.sqrt(q - g * Math.cos(z)) / Math.sin(z);
}
return magnifiedAzimuthalFactory(pSinZ);
}
Insert cell
function taperedAzimuthalEquidistantRaw(b1, b2, n) {
const dB = b2 - b1,
n0 = b1 / b2;
if (n >= 1) n = 1 - 0.0001;
if (n <= n0) n = n0 + 0.0001;
const g = dB / (b2 - b1 / n);
function pSinZ(z) {
return z <= b1
? z / Math.sin(z)
: (z - dB * Math.pow((z - b1) / dB, g) / g) / Math.sin(z);
}
return magnifiedAzimuthalFactory(pSinZ);
}
Insert cell
function taperedAzimuthalEqualAreaRaw(b1, b2, n) {

const G = 2 * Math.tan(b1 / 2),
dB = b2 - b1,
n0 = G / (G + dB);
if (n >= 1) n = 1 - 0.0001;
if (n <= n0) n = n0 + 0.0001;
const g = dB / (dB + (1 - 1 / n) * G),
C = G + dB * (1 - 1 / g),
R = C * Math.cos(b1 / 2),
RC = R / C;
function pSinZ(z) {
return z <= b1
? 2 * Math.sin(z / 2) / Math.sin(z)
: RC * (G + z -b1 - dB * Math.pow((z - b1) / dB, g) / g) / Math.sin(z);
}
return magnifiedAzimuthalFactory(pSinZ);
}
Insert cell
function taperedStereographicRaw(b1, b2, n) {
const {sin, cos, acos, pow, tan} = Math;
const G = sin(b1),
dB = b2 - b1,
n0 = G / (G + dB);
if (n >= 1) n = 1 - 0.0001;
if (n <= n0) n = n0 + 0.0001;
const g = dB / (dB + (1 - 1 / n) * G),
C = G + dB * (1 - 1 / g),
R = C / (cos(b1 / 2) * cos(b1 / 2)),
RC = R / C;
function pSinZ(z) {
return pSinZ = z <= b1
? 2 * tan(z / 2) / sin(z)
: RC * (G + z -b1 - dB * pow((z - b1) / dB, g) / g) / sin(z);
}
return magnifiedAzimuthalFactory(pSinZ);
}
Insert cell
taperedGnomicRaw = (b1, b2, n) => {

const G = Math.sin(b1) * Math.cos(b1),
dB = b2 - b1,
n0 = G / (G + dB);
if (n >= 1) n = 1 - 0.0001;
if (n <= n0) n = n0 + 0.0001;
const g = dB / (dB + (1 - 1 / n) * G),
C = G + dB * (1 - 1 / g),
R = C / (Math.cos(b1) * Math.cos(b1)),
RC = R / C;
function pSinZ(z) {
return z <= b1
? Math.tan(z) / Math.sin(z)
: RC * (G + z -b1 - dB * Math.pow((z - b1) / dB, g) / g) / Math.sin(z);
}
return magnifiedAzimuthalFactory(pSinZ);
}
Insert cell
function magnifiedAzimuthalMutator(raw) {
const rad = Math.PI / 180,
deg = 180 / Math.PI,
epsilon = 1e-4;
let b1 = 30 * rad,
b2 = 120 * rad,
n = 0.5;
const mutate = d3.geoProjectionMutator(raw);
const projection = mutate(b1, b2, n);
projection.innerRadius = function(inner) {
if (!arguments.length) return b1 * deg;
b1 = Math.max(epsilon, Math.min(90 - epsilon, inner)) * rad;
if (b1 > b2) { let tmp = b1; b1 = b2, b2 = tmp; }
if (b1 === b2) b2 += epsilon;
mutate(b1, b2, n);
return projection.clipAngle(b2 * deg);
}
projection.outerRadius = function(outer) {
if (!arguments.length) return b1 * deg;
b2 = Math.max(epsilon, Math.min(180 - epsilon, outer)) * rad;
if (b1 > b2) { let tmp = b1; b1 = b2, b2 = tmp; }
if (b1 === b2) b2 += epsilon;
mutate(b1, b2, n);
return projection.clipAngle(b2 * deg);
}
projection.ratio = function(ratio) {
if (!arguments.length) return ratio;
n = Math.max(0, Math.min(1, ratio));
mutate(b1, b2, n);
return projection;
}
return projection.clipAngle(b2 * deg);
}
Insert cell
function magnifiedAzimuthalFactory(cb) {
let cosPhi, z, cosZ, pSinZ;
return function(lambda, phi) {
cosPhi = Math.cos(phi), cosZ = cosPhi * Math.cos(lambda), z = Math.acos(cosZ);
if (z === 0) return [0, 0];
if (z === Math.PI) return [Math.cos(lambda), Math.sin(phi)]; // I think
pSinZ = cb(z);
return [
pSinZ * cosPhi * Math.sin(lambda),
pSinZ * Math.sin(phi)
];
}
}
Insert cell
Insert cell
magnifiedAzimuthal = projections[projection]()
.innerRadius(inner)
.outerRadius(outer)
.ratio(ratio)
.rotate([-rotation[0], -rotation[1]])
.translate([width / 2, height / 2])
.fitExtent([[padding, padding], [width - padding, height - padding]], sphere)

Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more