Published
Edited
Jan 18, 2021
1 fork
Importers
28 stars
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
tissot = geoTissot().projection(projection)
Insert cell
Insert cell
data = tissot(geojson);
Insert cell
Insert cell
Insert cell
Insert cell
conformal = {
return data
.map(indicatrix => indicatrix.w)
.every(omega => omega < 1e-6)
}
Insert cell
Insert cell
equalarea = {
return data
.map(indicatrix => Math.abs(indicatrix.s - 1))
.every(delta => delta < 1e-6)
}
Insert cell
Insert cell
rightAngles = {
return data
.map(indicatrix => Math.abs(indicatrix.s - indicatrix.h * indicatrix.k))
.every(delta => delta < 1e-6)
}
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
parallels = new Set(data
.filter(indicatrix => indicatrix.w < 1e-5)
.map(indicatrix => Math.round(indicatrix.coordinates[1] * 1000) / 1000)
);
Insert cell
Insert cell
projection = d3.geoAlbers()
.scale(640 * w / 640)
.translate([w / 2, h / 2]);
Insert cell
Insert cell
Insert cell
Insert cell
// Formulas are taken from Snyder, Map projections - A working manual, pp. 20-26.
// Based on Jason Davies's implementation:
// - https://www.jasondavies.com/maps/tissot/
// - https://gis.stackexchange.com/questions/5068/how-to-create-an-accurate-tissot-indicatrix/

geoTissot = {
// transpose 2x2 matrix
function transpose(mat) {
return [mat[0], mat[2], mat[1], mat[3]]
}
// dot product of two 2x2 matrices
function dot(a, b) {
return [
a[0] * b[0] + a[1] * b[2],
a[0] * b[1] + a[1] * b[3],
a[2] * b[0] + a[3] * b[2],
a[2] * b[1] + a[3] * b[3]
]
}

const delta = Math.pow(10, -5.2),
rad = Math.PI / 180,
fn = function() {};
return function() {
let projection = null;

function tissot(geojson) {
let xy,
stream = projection.stream({
point: function(lambda, phi) { xy = [lambda, phi] },
lineStart: fn,
lineEnd: fn,
polygonStart: fn,
polygonEnd: fn
}),
sf = projection.scale() * rad, // scale factor
indicatrices = [];

return d3.geoStream(geojson, {
point: function(lambda, phi) {
const cosPhi = Math.cos(phi * rad);
// skip poles (division by zero)
if (1e-6 < cosPhi) {
let p = (xy = null, stream.point(lambda, phi), xy);
if (!!xy) {
let dLambda = lambda > 0 ? lambda - delta : lambda + delta,
dL = (xy = null, stream.point(dLambda, phi), xy);
if (!!xy) {
let dPhi = phi > 0 ? phi - delta : phi + delta,
dP = (xy = null, stream.point(lambda, dPhi), xy);
if (!!xy) {
let M = (lambda - dLambda) * sf,
m = (phi - dPhi) * sf,
// derivates
dxdL = (p[0] - dL[0]) / M,
dydL = (p[1] - dL[1]) / M,
dxdP = (p[0] - dP[0]) / m,
dydP = (p[1] - dP[1]) / m,
// indicatrix
h = Math.sqrt(dxdP * dxdP + dydP * dydP),
k = Math.sqrt(dxdL * dxdL + dydL * dydL) / cosPhi,
s = -(dydP * dxdL - dxdP * dydL) / cosPhi,
A = Math.sqrt(Math.max(0, h * h + k * k + s * 2)),
B = Math.sqrt(Math.max(0, h * h + k * k - s * 2)),
a = Math.abs((A + B) / 2),
b = Math.abs((A - B) / 2),
w = Math.asin(Math.max(-1, Math.min(1, B / A))) * 2,
// indicatrix rotation
mat = dot([dxdL, dxdP, dydL, dydP], [1 / cosPhi, 0, 0, 1]),
z = dot(mat, transpose(mat)),
theta = Math.atan2(z[2] + z[1], z[0] - z[3]) / 2;
indicatrices.push({
coordinates: [lambda, phi], h, k, s, w, a, b, theta
});
}
}
}
}
}
}),
indicatrices;
}
tissot.projection = function(p) {
return arguments.length ? (projection = p, tissot) : projection;
}

return tissot;
}
}
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell

Purpose-built for displays of data

Observable is your go-to platform for exploring data and creating expressive data visualizations. Use reactive JavaScript notebooks for prototyping and a collaborative canvas for visual data exploration and dashboard creation.
Learn more