Public
Edited
Aug 2, 2023
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
maples2003 = maples
.filter((d) => d.Year === 2003)
.map((d) => ({
year: d.Year,
watershed: d.Watershed,
stemLength: d.StemLength,
leafMass: d.LeafDryMass,
stemMass: d.StemDryMass,
leafArea: d.CorrectedLeafArea
}))
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
maples2003Prepped = scale(maples2003).map((d) => [
d.stemLength,
d.stemMass,
d.leafArea,
d.leafMass
])
Insert cell
maples2003Clusters = ML.KMeans(maples2003Prepped, 2)
Insert cell
maples2003WithClusters = maples2003.map((d, i) => ({
...d,
clusterIndex: maples2003Clusters.clusters[i]
}))
Insert cell
clustersCorrespondingToWatershed = d3.greatest([
maples2003WithClusters.filter((d) => {
return (d.watershed === 'Reference' && d.clusterIndex === 0)
|| (d.watershed === 'W1' && d.clusterIndex === 1)
}),
maples2003WithClusters.filter((d) => {
return (d.watershed === 'Reference' && d.clusterIndex === 1)
|| (d.watershed === 'W1' && d.clusterIndex === 0)
})
], (data) => data.length)
// We need to account for the fact that the order of the clusters is random
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell

Purpose-built for displays of data

Observable is your go-to platform for exploring data and creating expressive data visualizations. Use reactive JavaScript notebooks for prototyping and a collaborative canvas for visual data exploration and dashboard creation.
Learn more