model = {
const m = tf.sequential({
layers: [
tf.layers.flatten({inputShape: [7, 7, 256]}),
tf.layers.dense({
units: 100,
activation: 'relu',
kernelInitializer: 'varianceScaling',
useBias: true
}),
tf.layers.dense({
units: NUM_CLASSES,
kernelInitializer: 'varianceScaling',
useBias: false,
activation: 'softmax'
})
]
});
const optimizer = tf.train.adam();
m.compile({optimizer: optimizer, loss: 'categoricalCrossentropy'});
return m;
}