Published
Edited
Feb 3, 2021
2 stars
Insert cell
Insert cell
Insert cell
chart = {
const svg = d3.create("svg")
.attr("viewBox", [0, 0, width, height]);

svg.append("g")
.call(xAxis);

svg.append("g")
.call(yAxis);
// Add an x title
svg.append("text")
.attr("transform", `translate(${margin.left + (x.range()[1] - x.range()[0])/2},${height})`)
.style("text-anchor", "middle")
.text("title")

return svg.node();
}
Insert cell
x = d3.scaleLinear()
.domain([0, 1])
.range([margin.left, width - margin.right])
Insert cell
x(1)
Insert cell
y = d3.scaleLinear()
.domain([0, 1])
.range([height - margin.bottom, margin.top])
Insert cell
xAxis = g => g
.attr("transform", `translate(0,${height - margin.bottom})`)
.call(d3.axisBottom(x))
Insert cell
yAxis = g => g
.attr("transform", `translate(${margin.left },0)`)
.call(d3.axisLeft(y))
Insert cell
margin = ({top: 20, right: 30, bottom: 40, left: 100})
Insert cell
height = 500
Insert cell
Insert cell
Insert cell
data = _.range(500).map((d,i) => ({id:i, x:Math.random(), y:Math.random(), color: Math.random()}))
Insert cell
render_data_table(data)
Insert cell
// Create a scatterplot of the `data` array
scatter = {
const svg = d3.create("svg")
.attr("viewBox", [0, 0, width, height]);

svg.append("g")
.call(xAxis);

svg.append("g")
.call(yAxis);
// Add an x title
svg.append("text")
.attr("transform", `translate(${margin.left + (x.range()[1] - x.range()[0])/2},${height})`)
.style("text-anchor", "middle")
.text("title")

const circles = svg.selectAll("circle")
.data(data, d => d.id)
.join("circle")
.attr("cx", d => x(d.x))
.attr("cy", d => y(d.y))
.attr("r", 5)
.style("fill", "rgb(73, 141, 201)")
return svg.node();
}
Insert cell
Insert cell
// Create a scatterplot of the `data` array
animated_scatter = {
const svg = d3.create("svg").attr("viewBox", [0, 0, width, height]);

svg.append("g").call(xAxis);

svg.append("g").call(yAxis);

// Add an x title
svg
.append("text")
.attr(
"transform",
`translate(${margin.left + (x.range()[1] - x.range()[0]) / 2},${height})`
)
.style("text-anchor", "middle")
.text("title");

const circles = svg
.selectAll("circle")
.data(data, d => d.id)
.join("circle")
.attr("cy", height - margin.bottom)
.attr("cx", d => x(d.x))
.attr("r", 5)
.style("fill", "rgb(73, 141, 201)")
.transition()
.duration(1000)
.delay(d => x(d.x))
.attr("cy", d => y(d.y));

return svg.node();
}
Insert cell
Insert cell
Insert cell
// Create a chart here where you explicitly manage the updating of elements
// Create a scatterplot of the `data` array
custom_scatter = {
let svg, x_axis, y_axis, x_label;
if (!this) {
svg = d3.create("svg").attr("viewBox", [0, 0, width, height]);

x_axis = svg
.append("g")
.attr("class", "x_axis")
.call(xAxis);

y_axis = svg
.append("g")
.attr("class", "y_axis")
.call(yAxis);

// Add an x title
x_label = svg
.append("text")
.attr(
"transform",
`translate(${margin.left +
(x.range()[1] - x.range()[0]) / 2},${height})`
)
.style("text-anchor", "middle")
.text("title");
} else {
svg = d3.select(this);
x_axis = svg.select(".x_axis");
y_axis = svg.select(".y_axis");
}

const chart_data = data.filter(d => d.color < max_color);
const circles = svg
.selectAll("circle")
.data(chart_data, d => d.id)
.join(
enter =>
enter
.append("circle")
.attr("cy", height - margin.bottom)
.attr("cx", d => x(d.x))
.attr("r", 5)
.style("fill", "rgb(73, 141, 201)"),
update => update,
exit =>
exit
.style("fill", "red")
.transition()
.duration(1000)
.delay(d => x(1 - d.x))
.attr("cy", height - margin.bottom)
.remove()
)
.transition()
.duration(1000)
.delay(d => x(d.x))
.attr("cy", d => y(d.y));

return svg.node();
}
Insert cell
Insert cell
d3 = require("d3@6")
Insert cell
import {table_styles, render_data_table} from "@uw-info474/utilities"
Insert cell
table_styles
Insert cell
_ = require("lodash")
Insert cell
import {slider} from "@jashkenas/inputs"
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more