Public
Edited
Sep 19, 2024
18 forks
Importers
55 stars
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
vl.markSquare({size: 2, opacity: 1})
.data('data/zipcodes.csv')
.transform(vl.calculate('substring(datum.zip_code, 0, 1)').as('digit'))
.project(
vl.projection('albersUsa')
)
.encode(
vl.longitude().fieldQ('longitude'),
vl.latitude().fieldQ('latitude'),
vl.color().fieldN('digit')
)
.width(width)
.height(Math.floor(width / 1.75))
.autosize({type: 'fit-x', contains: 'padding'})
.config({view: {stroke: null}})
.render()
Insert cell
Insert cell
{
const brush = vl.selectInterval().encodings('x');
const click = vl.selectPoint().encodings('color');

const scale = {
domain: ['sun', 'fog', 'drizzle', 'rain', 'snow'],
range: ['#e7ba52', '#a7a7a7', '#aec7e8', '#1f77b4', '#9467bd']
};

const plot1 = vl.markPoint({filled: true})
.encode(
vl.color().value('lightgray')
.if(brush, vl.color().fieldN('weather').scale(scale).title('Weather')),
vl.size().fieldQ('precipitation').scale({domain: [-1, 50], range: [10, 500]}).title('Precipitation'),
vl.order().fieldQ('precipitation').sort('descending'),
vl.x().timeMD('date').axis({title: 'Date', format: '%b'}),
vl.y().fieldQ('temp_max').scale({domain: [-5, 40]}).axis({title: 'Maximum Daily Temperature (°C)'})
)
.width(width)
.height(300)
.params(brush)
.transform(vl.filter(click));

const plot2 = vl.markBar()
.encode(
vl.color().if(click, vl.color().fieldN('weather')).value('lightgray')
.scale(scale).title('Weather'),
vl.x().count(),
vl.y().fieldN('weather').scale({domain: scale.domain}).title('Weather')
)
.width(width)
.params(click)
.transform(vl.filter(brush));

return vl.vconcat(plot1, plot2)
.data('data/seattle-weather.csv')
.autosize({type: 'fit-x', contains: 'padding'})
.render();
}
Insert cell
Insert cell
vl.markBar({ opacity: 0.4 })
.params(
vl.param('Year').value(2000).bind(vl.slider(1850, 2000, 10))
)
.data('data/population.json')
.transform(
vl.calculate('datum.sex === 1 ? "Male" : "Female"').as('sex'),
vl.filter('datum.year === Year')
)
.encode(
vl.x().sum('people').scale({ domain: [0, 12e6] }).stack(null).title('People'),
vl.y().fieldO('age').sort('descending').title('Age'),
vl.color().fieldN('sex').scale({ range: ['#675193', '#ca8861'] }).title('Sex')
)
.height(300) // fix the height to keep stability over missing data
.render()
Insert cell
Insert cell
Insert cell
viewof year = Range([1850, 2000], { step: 10, value: 2000 })
Insert cell
vl.markBar({ opacity: 0.4 })
.params(
// use viewof to bind to the input element (the view), not the numeric year value
vl.param('Year').bind(viewof year)
)
.data('data/population.json')
.transform(
vl.calculate('datum.sex === 1 ? "Male" : "Female"').as('sex'),
vl.filter('datum.year === Year')
)
.encode(
vl.x().sum('people').scale({ domain: [0, 12e6] }).stack(null).title('People'),
vl.y().fieldO('age').sort('descending').title('Age'),
vl.color().fieldN('sex').scale({ range: ['#675193', '#ca8861'] }).title('Sex')
)
.height(300)
.render()
Insert cell
Insert cell
{
const isOrigin = vl.selectPoint('isOrigin')
.fields('Origin')
.bind('legend'); // bind to legend interactions
const isYear = vl.selectPoint('isYear')
.fields('Year').value(1970)
.bind(vl.slider(1970, 1980, 1).name('Year')); // bind to slider
const show = vl.and(isOrigin, isYear); // combine selections

return vl.markCircle()
.data('data/cars.json')
.transform(
vl.calculate('year(datum.Year)').as('Year')
)
.params(isOrigin, isYear) // add selections to plot
.encode(
vl.x().fieldQ('Horsepower'),
vl.y().fieldQ('Miles_per_Gallon'),
vl.color().if(show, vl.color().fieldN('Origin')).value('grey'),
vl.opacity().if(show, vl.value(1.0)).value(0.2)
)
.render();
}
Insert cell
Insert cell
Insert cell
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more