Published
Edited
Sep 28, 2020
1 fork
24 stars
Insert cell
Insert cell
chart = {
const mouseover = vl
.selectSingle("index")
.on("mouseover")
.encodings("x")
.nearest(true)
.init({ x: { year: 2005, month: 1, date: 1 } });

const base = vl.mark().encode(
vl.x().fieldT("date").axis(null)
);

const hiddenPoints = base.markPoint({ opacity: 0 }).select(mouseover);
const line = base
.markLine()
.transform(
vl.lookup("symbol").from(mouseover.key("symbol")),
vl.calculate(
"datum.index && datum.index.price > 0 ? (datum.price - datum.index.price)/datum.index.price : 0"
).as("indexed_price")
)
.encode(
vl.y().fieldQ("indexed_price").axis({ format: "%" }),
vl.color().fieldN("symbol")
);

const tooltipBase = base
.transform(vl.filter(mouseover))
.encode(vl.color().value("firebrick"));

const tooltip = vl.layer(
tooltipBase.markRule({ strokeWidth: 0.5 }),
tooltipBase.markText({ align: "center", fontWeight: 100 }).encode(
vl.y().value(310),
vl.text().fieldT("date").timeUnit("yearmonth")
)
);

return vl
.layer(hiddenPoints, line, tooltip)
.data("data/stocks.csv")
.width(width - 150)
.height(300)
.render();
}
Insert cell
Insert cell
{
const base = vl.mark().encode(
vl.x().fieldT("date").axis(null)
);

const line = base
.markLine()
.encode(vl.y().fieldQ("price"), vl.color().fieldN("symbol"));

return vl
.layer(line)
.data("data/stocks.csv")
.width(650)
.height(300)
.render();
}
Insert cell
Insert cell
{
const mouseover = vl
.selectSingle("index")
.on("mouseover")
.encodings("x")
.nearest(true)
.init({ x: { year: 2005, month: 1, date: 1 } });

const base = vl.mark().encode(
vl.x().fieldT("date").axis(null)
);

const hiddenPoints = base
.markPoint({ opacity: 0.1 })
.select(mouseover)
.encode(
// Let's color code it interactively to demonstrate it is working, but we will remove it later
vl.color().if(mouseover, vl.value("firebrick")).value("steelblue")
);

return vl
.layer(hiddenPoints)
.data("data/stocks.csv")
.width(650)
.height(300)
.render();
}
Insert cell
Insert cell
{
const mouseover = vl
.selectSingle("index")
.on("mouseover")
.encodings("x")
.nearest(true)
.init({ x: { year: 2005, month: 1, date: 1 } });

const base = vl.mark().encode(
vl.x().fieldT("date").axis(null)
);

const hiddenPoints = base
.markPoint({ opacity: 0.1 })
.select(mouseover)
.encode(
// Let's color code it interactively to demonstrate it is working, but we will remove it later
vl.color().if(mouseover, vl.value("firebrick")).value("steelblue")
);

const line = base
.markLine()
.transform(
vl.lookup("symbol").from(mouseover.key("symbol")),
vl.calculate(
"datum.index && datum.index.price > 0 ? (datum.price - datum.index.price)/datum.index.price : 0"
).as("indexed_price")
)
.encode(
vl.y().fieldQ("indexed_price").axis({ format: "%" }),
vl.color().fieldN("symbol")
);

return vl
.layer(hiddenPoints, line)
.data("data/stocks.csv")
.width(650)
.height(300)
.render();
}
Insert cell
Insert cell
{
const mouseover = vl
.selectSingle("index")
.on("mouseover")
.encodings("x")
.nearest(true)
.init({ x: { year: 2005, month: 1, date: 1 } });

const base = vl.mark().encode(
vl.x().fieldT("date").axis(null)
);

const hiddenPoints = base.markPoint({ opacity: 0 }).select(mouseover);

const tooltipBase = base
.transform(vl.filter(mouseover))
.encode(vl.color().value("firebrick"));

const tooltip = vl.layer(
tooltipBase.markRule({ strokeWidth: 0.5 }),
tooltipBase.markText({ align: "center", fontWeight: 100 }).encode(
vl.y().value(310),
vl.text().fieldT("date").timeUnit("yearmonth")
)
);

return vl
.layer(hiddenPoints, tooltip)
.data("data/stocks.csv")
.width(650)
.height(300)
.render();
}
Insert cell
Insert cell
Insert cell
vegaEmbed({
$schema: "https://vega.github.io/schema/vega-lite/v4.json",
data: {
values: data,
format: { parse: { date: "date" } }
},
width: 650,
height: 300,
layer: [
{
selection: {
index: {
type: "single",
on: "mouseover",
encodings: ["x"],
nearest: true,
init: { x: { year: 2005, month: 1, date: 1 } }
}
},
mark: "point",
encoding: {
x: { field: "date", type: "temporal", axis: null },
opacity: { value: 0 }
}
},
{
transform: [
{
lookup: "symbol",
from: { selection: "index", key: "symbol" }
},
{
calculate:
"datum.index && datum.index.price > 0 ? (datum.price - datum.index.price)/datum.index.price : 0",
as: "indexed_price"
}
],
mark: "line",
encoding: {
x: { field: "date", type: "temporal", axis: null },
y: {
field: "indexed_price",
type: "quantitative",
axis: { format: "%" }
},
color: { field: "symbol", type: "nominal" }
}
},
{
transform: [{ filter: { selection: "index" } }],
encoding: {
x: { field: "date", type: "temporal", axis: null },
color: { value: "firebrick" }
},
layer: [
{ mark: { type: "rule", strokeWidth: 0.5 } },
{
mark: { type: "text", align: "center", fontWeight: 100 },
encoding: {
text: { field: "date", timeUnit: "yearmonth" },
y: { value: 310 }
}
}
]
}
]
})
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more