Published
Edited
Nov 22, 2021
3 stars
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
druid = require("@saehrimnir/druidjs@0.3.16")
Insert cell
Insert cell
districts = new Set(flows.map((d) => d.CODEi))
Insert cell
matrix = {
const index = d3.index(
flows,
(d) => d.CODEi,
(d) => d.CODEj
);
return Array.from(districts, (i) =>
Array.from(districts, (j) => index.get(i).get(j).Fij)
);
}
Insert cell
Insert cell
positions = {
const X = druid.Matrix.from(matrix); // X is the data as object of the Matrix class.
return new druid["UMAP"](X, 10, 1, 1, 2).transform()._data;
}
Insert cell
X = positions.filter((_, i) => i % 2 === 0)
Insert cell
Y = positions.filter((_, i) => i % 2 === 1)
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Plot.dot(districts, { x: X, y: Y, fill: his, r: 7 }).plot({
x: { label: "← first UMAP dimension", reverse: true, axis: "top" },
y: { label: "↓ second UMAP dimension", reverse: true, axis: "right" },
color: { scheme: "tableau10" }
})
Insert cell
Insert cell
simple = import("simple-statistics@7")
Insert cell
positions1 = {
const X = druid.Matrix.from(matrix); // X is the data as object of the Matrix class.
return new druid["UMAP"](X, 5, 1, 1, 1).transform()._data;
}
Insert cell
thresholds = simple
.ckmeans(positions1, 3)
.slice(1)
.map((g) => d3.min(g))
Insert cell
clusters = Array.from(positions1, (d) =>
d < thresholds[0]
? "cluster A"
: d < thresholds[1]
? "cluster B"
: "cluster C"
)
Insert cell
Insert cell
clustMap = Plot.dot(districts, { x: X, y: Y, fill: clusters, r: 7 }).plot({
x: { label: "← first UMAP dimension", reverse: true, axis: "top" },
y: { label: "↓ second UMAP dimension", reverse: true, axis: "right" },
color: { scheme: "category10" }
})
Insert cell
Insert cell
Insert cell
Insert cell
classColor = {
const { domain, range } = clustMap.scale("color");
const a = d3.scaleOrdinal(domain, range);
return (i) => a(clusters[i]);
}
Insert cell
Insert cell
Insert cell
umapColor1 = {
const c = d3.scaleSequential([-2, 5], d3.interpolateWarm);
return (i) => c(positions1[i]);
}
Insert cell
map(umapColor1)
Insert cell
umapColor2 = {
const k = 80;
return (i) => d3.lab(40, k * (X[i] + 2 * Y[i]), k * (X[i] - Y[i]));
}
Insert cell
map(umapColor2)
Insert cell
Insert cell
land = FileAttachment("land.json").json()
Insert cell
points = FileAttachment("coordinates.csv")
.csv()
.then(
(data) =>
new Map(
data.map(({ X_dd: lat, Y_dd: lon, CODE114: code }) => [
code,
[+lon, +lat]
])
)
)
Insert cell
projection = d3.geoMercator().fitExtent(
[
[20, 30],
[width - 20, width * 0.45 - 30]
],
land
)
Insert cell
legend = ({ domain, range }) => Swatches(d3.scaleOrdinal(domain, range))
Insert cell
import { Swatches } from "@d3/color-legend"
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more