Public
Edited
May 7, 2024
Fork of Andromeda_JS
2 forks
1 star
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
labeled_weights
Insert cell
Insert cell
weights
Insert cell
Insert cell
updated_weights
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
// Distance metric, computes normalized high-dimensional distance between 2 rows in the data table.
// r1, r2 = references to data table rows.
function Distance(r1, r2) {
return d3.sum(
data.attrs.map((attr) => Math.abs(r1[attr] - r2[attr]) * data.weights[attr])
); // weighted L1
//Math.abs(r1[attr] - r2[attr]) / data.stdevs[attr] * data.weights[attr] )); // weighted L1 normalized
//return d3.sum(data.attrs.map(attr =>
// Math.abs(r1[attr] - r2[attr]) / data.stdevs[attr] )); // L1
//return Math.sqrt(d3.sum(data.attrs.map(attr =>
// Math.pow((r1[attr] - r2[attr])/data.stdevs[attr], 2)))); // L2
}
Insert cell
Insert cell
d3.mean(graph.edges, (e) => e.mydistance)
Insert cell
Insert cell
{ // update the MDS based on slider changes
data.weights = w;
graph.edges.forEach( (e, i) => {
e.mydistance = Distance(e.source.row, e.target.row)} );
simulation.force("link")
.distance(e => e.mydistance * scale * distanceScale);
simulation.alpha(1).restart();
}
Insert cell
// MDS force simulator
simulation = d3
.forceSimulation(graph.vertices)
.force(
"link",
d3
.forceLink(graph.edges)
.distance((e) => e.mydistance * distanceScale)
//.strength(e => 10.0 / e.distance)
.strength(0.2)
)
//.force("charge", d3.forceManyBody())
.force("center", d3.forceCenter(height / 2.0, height / 2.0))
Insert cell
Insert cell
Insert cell
width
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
scale_to_pix.domain()
Insert cell
scale_to_pix.invert(431)
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
//manhattan_distance([2,2], [1,8])
Insert cell
Insert cell
//euclidean_distance([1,2], [2,5])
Insert cell
//testing_data = [[24.9, 8],[25.1, 6],[24.8, 3.39]]
Insert cell
//pairwise_distance(testing_data)
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
//x = [[0, 25, 31.88], [25, 0, 16.28], [31.88, 16.28, 0]]
Insert cell
//y = [[0,2.3,5], [2.31,0,2.76], [5.04, 2.76, 0]]
Insert cell
//stress(x, y)
Insert cell
Insert cell
Insert cell
//testing_data = [[1,2], [3,4]]
Insert cell
//testing_weights = [1, 0.5]
Insert cell
Insert cell
Insert cell
Insert cell
attrs.length
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
FileAttachment("Animal_Data_Andromeda2.csv").csv()
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more