Public
Edited
Jul 15, 2023
Insert cell
Insert cell
// load data
olympians = d3.csv("https://raw.githubusercontent.com/flother/rio2016/master/athletes.csv", d3.autoType)
viewof table = Inputs.table(olympians)


data = d3.csv("https://data.seattle.gov/api/views/76t5-zqzr/rows.csv")

import {lasers} from "@observablehq/faa-laser-reports-data"


Insert cell
{
// To group the athletes by sport
athletesBySport = d3.group(athletes, d => d.sport);
athletesBySport.get("Soccer");

// to compute the total earnings per sport for these athletes
d3.rollup(athletes, v => d3.sum(v, d => d.earnings), d => d.sport)

// the athlete earnings sorted by least to greatest
d3.groupSort(athletes, g => d3.median(g, d => d.earnings), d => d.earnings)

// d3.index creates a Map from key to unique value. Given several keys, it returns a nested Map
index = d3.index(athletes, d => d.name)

// Index is very powerful for joining two datasets
facts.map(({about: name, fact}) => ({fact, name, ...index.get(name)}))

// d3.merge flattens the specified iterable-of-iterables into a new array
// similar to the built-in array.concat and array.flat but can be used to flatten nested iterables as well as plain (untyped) arrays
d3.merge([[1], [2, 3]])

d3.count(flights, d => d.price)
d3.sum([1, 2, 3, -0.5])
d3.mean(olympic_athletes, d => d.height)
d3.median([0, 1, 2, 5])
d3.variance(olympic_athletes, d => d.height)
d3.deviation(olympic_athletes, d => d.height)
d3.quantile(olympic_athletes, 0.05, d => d.height)
d3.cumsum([1, 2, 3, 4])
d3.rank([23, 2, -1, 4])


// d3.bin groups data points into buckets of (usually) equal widths along a comparison axis.
values1 = distribution("Uniform") // 1000 values distributed with d3.randomUniform
draw_values(this || DOM.svg(width, 100), values1)
draw_buckets(bin1, values1)
}


Insert cell
{
randomDistributions = {
const r20 = d3.randomNormal(max * 0.3, 2),
r21 = d3.randomNormal(max * 0.75, 1),
r4 = d3.randomExponential(0.3);
return [
{ label: "Uniform", random: d3.randomUniform(0.5, max - 0.3) },
{ label: "Normal", random: d3.randomNormal(max / 2, (1.4 * max) / 18) },
{ label: "Two blobs", random: () => (Math.random() > 0.3 ? r20() : r21()) },
{ label: "Skewed right", random: d3.randomLogNormal() },
{ label: "Skewed left", random: () => 18 - r4() }
];
}
}
Insert cell
function draw_values(svg, values) {
// We sort the data for meaningful transitions.
const current = values.slice().sort();

const prev = (svg && svg.values) || current;

svg.values = current;

d3.select(svg)
.selectAll("circle")
.data(current)
.join("circle")
.attr("r", 2)
.attr("stroke", "#588")
.attr("fill", "lightblue")
.attr("fill-opacity", 0.3)
.attr("cx", (_, i) => x(prev[i]))
.attr("cy", (_, i) => y(i))
.transition()
.duration(500)
.attr("cx", x);

return svg;
}

Insert cell
function draw_buckets(bin, values) {
const svg = this || DOM.svg(width, 100);

const buckets = bin(values);

const binColor = d3
.scaleThreshold()
.domain(buckets.map(d => d.x0))
.range(colors);

d3.select(svg)
.selectAll("rect")
.data(buckets)
.join("rect")
.attr("y", d => 10)
.attr("height", 100 - 2 * 10)
.attr("x", d => (x(d.x0) + 1) | 0)
.attr("width", d => (x(d.x1) | 0) - (x(d.x0) | 0) - 2)
.attr("stroke", d => binColor(d.x0))
.attr("stroke-width", 1)
.attr("stroke-dasharray", d => (d.length === 0 ? "1 5" : null))
.attr("fill", "none");

draw_values(svg, values);

d3.select(svg)
.selectAll("circle")
.attr("fill", binColor)
.attr("stroke", binColor);

d3.select(svg)
.selectAll("text")
.data(buckets.filter(d => d.length > 0))
.join("text")
.attr("x", d => (x(d.x0) + 3) | 0)
.attr("y", 86)
.attr("fill", "black")
.attr("font-size", 9)
.text(d =>
x(d.x1) - x(d.x0) < 50
? d.length
: d.length > 1
? `${d.length} items`
: d.length === 1
? "1 item"
: "empty bin"
);

return svg;
}

Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more