Public
Edited
Jul 25, 2023
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
marCasadoAir = FileAttachment("marCasadoAir@5.csv").csv({typed: true}) // Date issue
Insert cell
marCasadoSea = FileAttachment("marCasadoSea@4.csv").csv({typed: true}) // Date issue
Insert cell
Insert cell
// Write code to create a database called marCasadoDB, with tables 'air' and 'sea':
marCasadoDB = DuckDBClient.of({air: marCasadoAir, sea: marCasadoSea})
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
marCasadoDB
SELECT air.month
, meanPressure
, PAR
, meanHumidity
, windDirection
, sea.maxTide
, sea.minTide
, sea.salinity
, sea.seaSurfaceTemp as SST
, CASE WHEN date_part('month', air.month) IN (10, 11, 12, 1, 2, 3) THEN 'hot moist' ELSE 'cool dry' END AS 'season'
FROM air
JOIN sea
ON air.month = sea.month
Insert cell
Insert cell
Insert cell
Insert cell
// Write Plot code to create a heatmap of sea surface temperature (SST) by year and month, starting from the 'cell' snippet:

Insert cell
Plot.plot({
marks: [
Plot.cell(marCasado, {
x: d => d.month.getUTCMonth(),
y: d => d.month.getUTCFullYear(),
fill: "SST",
tip: true
})
],
y: {tickFormat: "Y", padding: 0},
x: {padding: 0, tickFormat: Plot.formatMonth()}
})
Insert cell
Insert cell
Insert cell
import {PlotMatrix} with {marCasado as data} from "@observablehq/autoplot-matrix"
Insert cell
// Use the PlotMatrix function (expecting marCasado) to create a pair plot:
PlotMatrix(marCasado)
Insert cell
Insert cell
Insert cell
Insert cell
ML = require("https://www.lactame.com/lib/ml/6.0.0/ml.min.js")
Insert cell
Insert cell
import {scale, asMatrix} from "@chrispahm/hierarchical-clustering"
Insert cell
Insert cell
Insert cell
// Create a scaled version of the numeric variables
marCasadoScaled = scale(marCasado.map(({season, month, ...rest}) => rest))
Insert cell
Insert cell
// Convert to an array of arrays, just containing the values (no keys):
marCasadoArray = marCasadoScaled.map(Object.values)
Insert cell
Insert cell
// Perform principal component analysis:
marCasadoPCA = new ML.PCA(marCasadoArray)
Insert cell
Insert cell
Insert cell
// Get variance explained by each PC:
marCasadoPCA.getExplainedVariance()
Insert cell
Insert cell
// Get cumulative variance explained:
marCasadoPCA.getCumulativeVariance()
Insert cell
Insert cell
Insert cell
Insert cell
// Import viewof loadings from the notebook, with marCasadoScaled as food_scaled:
import {viewof loadings} with {marCasadoScaled as food_scaled} from "@chrispahm/principal-component-analysis"
Insert cell
// Look at viewof loadings:
viewof loadings
Insert cell
// import viewof scores from the notebook, with marCasadoScaled as food_scaled and marCasado as food:
import {viewof scores} with {marCasadoScaled as food_scaled, marCasado as food} from "@chrispahm/principal-component-analysis"
Insert cell
// Look at viewof scores:
viewof scores
Insert cell
Insert cell
// Create a PCA biplot with the scores and loadings
Plot.plot({
marks: [
Plot.dot(scoresCombined, {
x: "PC1",
y: "PC2",
fill: "season",
r: 4
}),
Plot.arrow(loadings, {
x1: 0,
x2: (d) => d.PC1 * scalingFactor,
y1: 0,
y2: (d) => d.PC2 * scalingFactor
}),
Plot.text(loadings, {
x: d => d.PC1 * scalingFactor,
y: d => d.PC2 * scalingFactor,
text: "Variable"
})
],
color: {legend: true}
})
Insert cell
scalingFactor = 5
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
// Alternatively (without an import):

// loadingsOption = marCasadoPCA
// .getEigenvectors()
// .data.map((d, i) => ({
// PC1: d[0],
// PC2: d[1],
// Variable: Object.keys(marCasadoScaled[0])[i]
// }))
Insert cell
// Alternatively to get score (projections into PC space):

// scoresOption = marCasadoPCA.predict(marCasadoArray).data.map((d,i) => ({month: marCasado[i].month,
// season: marCasado[i].season,
// PC1: d[0],
// PC2: d[1]}))
Insert cell

Purpose-built for displays of data

Observable is your go-to platform for exploring data and creating expressive data visualizations. Use reactive JavaScript notebooks for prototyping and a collaborative canvas for visual data exploration and dashboard creation.
Learn more