Public
Edited
Apr 6, 2023
3 forks
Importers
7 stars
Insert cell
Insert cell
Insert cell
// Here's the drawing. It's pretty standard d3.selection.join type stuff built on
// top of all the tools below.

pic = {
let svg = d3.create("svg").attr("width", size.w).attr("height", size.h);
let g = svg
.append("g")
.attr("transform", `translate(${size.margin}, ${size.margin})`);

let links = root.links();
g.append("g")
.attr("id", "links")
.selectAll("path")
.data(root.links())
.join("path")
.attr("d", diagonal)
.attr("fill", "none")
.attr("stroke", "#555")
.attr("stroke-opacity", 0.4)
.attr("stroke-width", 1.5);

let nodes = root.descendants();
g.append("g")
.selectAll("circle")
.data(root.descendants())
.join("circle")
.attr("cx", (d) => (size.w > size.size_break ? d.y : d.x))
.attr("cy", (d) => (size.w > size.size_break ? d.x : d.y))
.attr("r", 4 * (size.w / 1000) ** 0.5)
.attr("fill", "black");

return svg.node();
}
Insert cell
// There's a family of d3.link* functions that work well with d3.hierarchy and d3.tree.
// They all accept output from root.links (which returns pairs of linked nodes) and
// draws some type of path from one node to the other.

diagonal = {
if (size.w > size.size_break) {
return d3
.linkHorizontal()
.x((d) => d.y)
.y((d) => d.x);
} else {
return d3
.linkVertical()
.x((d) => d.x)
.y((d) => d.y);
}
}
Insert cell
// Here's another look at root, which was defined two cells down from here.
// This one waits until layout resolves, though, so you can see its effect.
// In particular, note that the nodes of this nested structure have x and y
// properties that we can use for placement.

{
layout;
return root;
}
Insert cell
// d3.tree()(hierarchy) supplements the input hierarchy further
// with layout information. See the next cell above to see what
// I mean.

layout = {
if (size.w > size.size_break) {
return d3.tree().size([size.h - 2 * size.margin, size.w - 2 * size.margin])(
root
);
} else {
return d3.tree().size([size.w - 2 * size.margin, size.h - 2 * size.margin])(
root
);
}
}
Insert cell
// d3.hierarchy accepts a nested structure like we already have and supplements it
// with additional tools. For example,
// any_node.descendants() will list all nodes descended from any_node.
// root.descendants() therefore lists all nodes.
// any_node.links() will, similarly, list all pairs of nodes that are connected.

root = d3.hierarchy(tree)
Insert cell
// This is the initial data set up via a standard random tree construction.
// The root node is an object with two properties:
// depth: which tells you how many steps from the root node you are and
// children: which is an array initialized to be just []

// We put the root on a stack and then, while the stack is non-empty,
// we pop a node off, randomly generate up to three children, put
// those the stack, and continue. Note that the probability of generating
// children decreases exponentially with depth.

tree = {
new_tree;
let p = 0.7;
let root = { depth: 0, children: [] };
let stack = [root];

while (stack.length > 0) {
let node = stack.pop();
for (let i = 0; i < 3; i++) {
if (d3.randomUniform(0, 1.2)() < p ** node.depth) {
let child = { depth: node.depth + 1, children: [] };
node.children.push(child);
stack.push(child);
}
}
}
return root;
}
Insert cell
// Just a little global variable that affects both layout and pic.

size = {
let w = d3.min([width, 1000]);
let h = 0.625 * w;
let margin = 10;
let size_break = 0;
return { w, h, margin, size_break };
}
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more