Public
Edited
Oct 8, 2024
Insert cell
Insert cell
data = Array.from({ length: Math.ceil(Math.PI * 8 * 100) }, (_, i) => [
i,
(i < 630 ? (630 - i) / 100 : 0) +
Math.sin(((Math.PI / 2) * -100 + i) / 100) +
1.5
])
Insert cell
blues = d3.schemeBlues[d3.max([Math.ceil(bands / 2), 3])]
Insert cell
oranges = d3.schemeOranges[d3.max([Math.floor(bands / 2), 3])]
Insert cell
scheme = d3
.merge(blues.map((d, i, a) => [d, oranges[i]]))
.filter((d) => d != undefined)
Insert cell
a = [
Math.sin((now + 0) / 500) * 5 + 5,
Math.sin((now + 100) / 500) * 5 + 5,
Math.cos(now / 500) * 2 + 8,
-Math.sin(now / 500) * 5 + 5,
-Math.cos(now / 500) * 5 + 5
]
Insert cell
Plot.plot({
y: { domain: [0, 10] },
x: { axis: "top" },
marks: [Plot.barY(a), Plot.ruleY([0])]
})
Insert cell
d3.scaleSequential()
Insert cell
viewof chartHeight = Inputs.range([0, 800], { step: 1 })
Insert cell
viewof markHeight = Inputs.range([0, 800], { step: 1 })
Insert cell
chart = Plot.plot({
marginLeft: 100,
height: 556,
width: 1152,
marginTop: 556 - chartHeight,
axis: null,
x: { axis: "bottom" },
y: { domain: [0, step] },
color: {
type: "ordinal",
range: scheme,
label: "Vehicles per hour",
tickFormat: (i) => ((i + 1) * step).toLocaleString("en"),
legend: true
},
marks: [
d3.range(bands).map((i) =>
Plot.areaY(data, {
x: (d) => d[0],
y: (d) => (i % 2 ? step - d[1] + i * step : d[1] - i * step),
y2: (d) => (i % 2 ? step : 0),
fill: i,
stroke: i % 2 ? "red" : "blue",
clip: true
})
),
Plot.axisY({ ticks: chartHeight / 40 }),
Plot.axisY({ dx: -40, tickFormat: (d) => step * 2 - d }),
Plot.axisY({ dx: -80, tickFormat: (d) => step * 2 + d })
]
})
Insert cell
Plot.plot({
height: chartHeight,
marks: [
Plot.areaY(data, { x: (d) => d[0], y: (d) => d[1] }),
Plot.axisY([1, 2])
]
})
Insert cell
bands = Math.ceil(markHeight / chartHeight)
Insert cell
step = (chartHeight / markHeight) * d3.max(data.map((d) => d[1]))
Insert cell
d3.range(1)
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more