Published
Edited
Apr 13, 2021
4 forks
1 star
Insert cell
Insert cell
html`<svg> <path stroke="black" fill="none" d="M0 0 L 100 100 L 200 0 Q 300 100 400 0"></svg>`
Insert cell
line = d3.line()
Insert cell
generated = line([[0, 0], [100, 100], [200, 0]])
Insert cell
html`<svg> <path stroke="black" fill="none" d="${generated}"></svg>`
Insert cell
md`
























`
Insert cell
Insert cell
swatches({ color })
Insert cell
svg = {
const svg = d3.create("svg").attr("viewBox", [0, 0, width, height]);

const g = svg
.append("g")
.attr("transform", `translate(${margin.left}, ${margin.top})`);

g.append("g")
.call(d3.axisBottom(x))
.attr("transform", `translate(0, ${height - margin.top - margin.bottom})`);
g.append("g").call(d3.axisLeft(y));

g.selectAll(".point")
.data(data)
.join("circle")
.attr("class", "point")
.attr("cx", d => x(d.date))
.attr("cy", d => y(d.price))
.attr("r", 2)
.attr("fill", d => color(d.symbol));

g.selectAll(".line")
.data(groupedData)
.join("path")
.attr("class", "line")
.attr("d", group => line2(group[1]))
.style("fill", "none")
.style("stroke", group => color(group[0]));

return svg.node();
}
Insert cell
groupedData = d3.groups(data, d => d.symbol)
Insert cell
line2 = d3
.line()
.x(d => x(d.date))
.y(d => y(d.price))
Insert cell
margin = ({ left: 50, top: 20, right: 20, bottom: 20 })
Insert cell
color = d3.scaleOrdinal(d3.schemeSet2)
Insert cell
x = d3
.scaleTime()
.domain(d3.extent(data, d => d.date))
.range([0, width - margin.left - margin.right])
Insert cell
y = d3
.scaleLinear()
.domain(d3.extent(data, d => d.price))
.range([ height - margin.top - margin.bottom, 0])
Insert cell
height = 300
Insert cell
fmt = d3.timeParse("%b %d %Y")
Insert cell
data = (await vegaDatasets["stocks.csv"]()).map(
d => ((d.date = fmt(d.date)), d)
)
Insert cell
vegaDatasets = require("vega-datasets@2")
Insert cell
d3 = require("d3@6")
Insert cell
import { swatches } from "@d3/color-legend"
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more