Published unlisted
Edited
Apr 16, 2022
1 fork
Insert cell
import {vl} from '@vega/vega-lite-api-v5'
Insert cell
df2 = data['movies.json']() // get hold of movies dataset
Insert cell
data = require('vega-datasets@1') // import vega_datasets
Insert cell
df2[0]['IMDB_Rating']
Insert cell
plot = vl.markBar().data(df2).encode(
vl.x().fieldQ('IMDB_Rating').bin(true),
vl.y().count()
)
Insert cell
plot.render()
Insert cell
vl.markBar().data(df2).encode(
vl.x().fieldQ('IMDB_Rating').bin(false),
vl.y().count()
).render()
Insert cell
{
const plot = vl.markCircle().encode({
x: {field: 'precip', type: 'quantitative', aggregate: 'average'},
y: {field: 'city', type: 'nominal'}
});
return html`<pre>${JSON.stringify(plot.toObject(), 0, 2)}</pre>`; // format JSON data
}
Insert cell
vl.markBar().data(df2).render()
Insert cell
Insert cell
// html`<pre>${JSON.stringify(plot.toObject(), 0, 2)}</pre>`;
Insert cell
Insert cell
vegalite = require("@observablehq/vega-lite@0.2")
Insert cell
vegalite.compile(plot.toObject()).spec;
Insert cell
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more