Public
Edited
Jun 7, 2023
Insert cell
Insert cell
map(width)
Insert cell
Insert cell
air = d3
.text(
"https://www.airnowapi.org/aq/data/?startDate=2023-06-07T12&endDate=2023-06-07T13&parameters=PM25&BBOX=-130,25,-65,55&dataType=A&format=text/csv&verbose=0&monitorType=0&includerawconcentrations=0&API_KEY=62F6D106-6781-4DC5-8A63-005044B666E2"
)
.then((d) =>
d3.csvParse("lat,lon,date,indicator,PM2.5,??\n" + d, d3.autoType)
)
Insert cell
// Here’s a copy, in case the API stops working
// air = FileAttachment("air.csv").csv({typed: true})
Insert cell
Insert cell
color = ({
label: "PM2.5",
type: "threshold",
domain: [50, 100, 150, 200, 300],
range: [
"rgb(156, 216, 78)", // Good
"rgb(250, 207, 57)", // Moderate
"rgb(249, 144, 73)", // Unhealthy for Sensitive Groups
"rgb(246, 94, 95)", // Unhealthy
"rgb(160, 112, 182)", // Very Unhealthy
"rgb(160, 106, 123)" // Hazardous
]
})
Insert cell
Insert cell
Insert cell
Plot.plot({
color,
marks: [
Plot.dot(air, {
x: "lon",
y: "lat",
fill: "PM2.5",
r: 4,
stroke: "white"
})
]
})
Insert cell
Insert cell
Plot.plot({
projection: "albers",
color,
marks: [
Plot.dot(air, {
x: "lon",
y: "lat",
fill: "PM2.5",
stroke: "white",
fx: "date"
})
]
})
Insert cell
// Group by date, and return the group with the largest key.
recent = d3
.greatest(
d3.group(air, (d) => d.date),
(d) => d[0]
)[1]
.filter((d) => d["PM2.5"] > 0) // remove the points with value -999
Insert cell
Insert cell
visibility().then(() => map(width))
Insert cell
// this is a function because we want to show the map at the top of the page.
map = (width) =>
Plot.plot({
width,
projection: "albers",
color: { ...color, legend: true },
marks: [
// this creates a path to clip the contour mark.
Plot.geo(nation, {
render: (i, s, v, d, c, next) => {
const g = next(i, s, v, d, c).children[0];
return svg`<clipPath id=nation>${g}`;
}
}),

Plot.contour(recent, {
x: "lon",
y: "lat",
fill: "PM2.5",
interpolate: "random-walk",
blur: 3,
thresholds: [0, ...color.domain],
stroke: "currentColor",
render: (i, s, v, d, c, next) => {
const g = next(i, s, v, d, c);
g.setAttribute("clip-path", "url(#nation)"); // add clip
return g;
}
}),

Plot.geo(nation, { stroke: "currentColor" }),

Plot.dot(recent, {
x: "lon",
y: "lat",
fill: "PM2.5",
stroke: "currentColor",
strokeOpacity: 0.8,
strokeWidth: 0.75,
tip: true
})
]
})
Insert cell
us = FileAttachment("us-counties-10m.json").json()
Insert cell
nation = topojson.feature(us, us.objects.nation)
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more