Public
Edited
Jan 4, 2023
Insert cell
Insert cell
[...Array(100)].map((_, i) => i * i)
Insert cell
GPU = require("gpu.js@2")
Insert cell
gpu = new GPU.GPU()
Insert cell
width = 800
Insert cell
height = 600
Insert cell
velocityScaleFactor = 8
Insert cell
velocityWidth = Math.ceil(width / velocityScaleFactor)
Insert cell
velocityHeight = Math.ceil(height / velocityScaleFactor)
Insert cell
advection = gpu.createKernel(function(state, velocity) {
const v = velocity[this.thread.y][this.thread.x];
return state[this.thread.y - v[1] / this.constants.height][this.thread.x - v[0] / this.constants.width];
})
.setArgumentTypes(["Array2D(2)", "Array2D(2)"])
.setConstants({ width, height })
.setOutput([velocityWidth, velocityHeight])
Insert cell
divergence2D = gpu.createKernel(function(field) {
const n = field[this.thread.y + 1][this.thread.x];
const s = field[this.thread.y - 1][this.thread.x];
const e = field[this.thread.y][this.thread.x + 1];
const w = field[this.thread.y][this.thread.x - 1];
return 0.5 * (e[0] - w[0] + n[1] - s[1]);
})
.setArgumentTypes(["Array2D(2)"])
.setConstants({ width, height })
.setOutput([velocityWidth, velocityHeight])
Insert cell
divergence2D(makeVelocityStateArray());
Insert cell
jacobi = gpu.createKernel(function(state, divergence) {
const n = state[this.thread.y + 1][this.thread.x];
const s = state[this.thread.y - 1][this.thread.x];
const e = state[this.thread.y][this.thread.x + 1];
const w = state[this.thread.y][this.thread.x - 1];
const div = divergence[this.thread.y][this.thread.x];
return 0.25 * (n + s + e + w - div);
})
.setArgumentTypes(["Array", "Array"])
.setConstants({ width, height })
.setOutput([velocityWidth, velocityHeight])
Insert cell
gradientSubtraction = gpu.createKernel(function(sfield, vfield) {
const n = sfield[this.thread.y + 1][this.thread.x];
const s = sfield[this.thread.y - 1][this.thread.x];
const e = sfield[this.thread.y][this.thread.x + 1];
const w = sfield[this.thread.y][this.thread.x - 1];
const vec = vfield[this.thread.y][this.thread.x];
return [vec[0] - 0.5 * (e - w), vec[1] - 0.5 * (n - s)];
})
.setArgumentTypes(["Array", "Array2D(2)"])
.setOutput([velocityWidth, velocityHeight])
Insert cell
makeVelocityStateArray = gpu.createKernel(function() {
return [
10 * this.thread.x / this.constants.width,
10 * this.thread.y / this.constants.height,
];
})
.setConstants({ width, height })
.setOutput([velocityWidth, velocityHeight])
Insert cell
makePressureStateArray = gpu.createKernel(function() {
return 0;
})
.setConstants({ width, height })
.setOutput([velocityWidth, velocityHeight])
Insert cell
velocity = {
const NUM_JACOBI_STEPS = 3;
let velocityState = makeVelocityStateArray();
let pressureState = makePressureStateArray();

while (true) {
velocityState = advection(velocityState, velocityState);
let divergenceState = divergence2D(velocityState);
for (let i = 0; i < NUM_JACOBI_STEPS; i++) {
pressureState = jacobi(pressureState, divergenceState);
}
velocityState = gradientSubtraction(pressureState, velocityState);
yield velocityState;
}
}
Insert cell
render = gpu.createKernel(function(velocity) {
// const v = velocity[0][0];
const v = velocity[
Math.floor(this.thread.y * this.constants.velocityHeight / this.constants.height)
][Math.floor(this.thread.x * this.constants.velocityWidth / this.constants.width)];
// this.color(v[0] < 0 ? 1 : 0, 0, 0);
// const val = velocity[
// this.thread.y * this.constants.velocityHeight / this.constants.height
// ][this.thread.x * this.constants.velocityWidth / this.constants.width];
this.color(0.5 + v[0], 0.5 + v[1], 0);
})
.setArgumentTypes(["Array2D(2)"])
.setConstants({ width, height, velocityWidth, velocityHeight })
.setOutput([width, height])
.setGraphical(true)
Insert cell
{
render(velocity);
return render.canvas
}
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more