Public
Edited
Jun 26, 2024
Insert cell
Insert cell
Insert cell
Insert cell
tripcontainer = html`<div style="height:700px"></div>`;

Insert cell
{
let layer = new deck.TripsLayer({
id: 'trips-layer',
data: paths,
getPath: d => d.path,
getTimestamps: d => d.timestamps.map(p => p - minTimestamp),
getColor: d => d.color,
opacity: 0.8,
widthMinPixels: 3,
rounded: true,
trailLength: Infinity,
currentTime: currentMinute * 60 * 1000
})
tripdeckgl.setProps({
layers: [
layer
]
})

return "onchange"
}
Insert cell
tripdeckgl = new deck.DeckGL({
container: tripcontainer,
map: mapboxgl,
mapboxAccessToken: '',
mapboxApiAccessToken: token,
mapStyle: 'mapbox://styles/mapbox/standard',
layers: [],
initialViewState: {
longitude: 20.680278,
latitude: 52.330556,
zoom: 11.5,
pitch: 0
},
controller: true
});
Insert cell
Insert cell
getDeckGLMap([
new deck.ScatterplotLayer({
id: 'scatterplot-layer',
data,
pickable: true,
opacity: 1,
filled: true,
radiusScale: 1,
radiusMinPixels: 2,
radiusMaxPixels: 2,
getPosition: d => [d.lon, d.lat],
getRadius: d => 1,
getFillColor: d => [255, 140, 0]
})
])
Insert cell
Insert cell
Insert cell
maxAdjustedTimestamp = d3.max(data, d => new Date(d["timestamp"]).getTime()) - minTimestamp
Insert cell
maxMinutes = Math.floor(maxAdjustedTimestamp /1000 / 60)
Insert cell
Insert cell
Insert cell
paths = data.reduce( (accum, d) => {
if(accum[d.track] === undefined){
accum[d.track] = {
track: d.track,
path: [],
timestamps: [],
};
}
accum[d.track].path.push([d.lon, d.lat])
accum[d.track].timestamps.push(d.timestamp)
let trucks = []
for(let truckid in accum){
accum[truckid].color = [255,140,0]
trucks.push(accum[truckid])
}
return trucks
}, {})

Insert cell
data = {
const load = await FileAttachment("traj.csv").csv({typed: true})
return load.map(d => ({...d, track: 0}))
}
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more