Unlisted
Edited
Sep 13, 2024
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
change_by_state_counts = FileAttachment(
"change_2022_2034_by_state_wide@2.csv"
).csv({ typed: true })
Insert cell
Insert cell
Insert cell
Insert cell
changePercStates = {
// const lcast_occ_data_change_soc2_filtered = lcast_occ_data_change_soc2.filter(
// (d) => d.description !== "Unclassified Occupation" //&& d.description !== "Overall"
// );
return addTooltips(
Plot.plot({
width,
//height: "auto",
projection: "identity",
color: {
type: "quantize",
n: 10,
//ticks: d3.range(0, 0.5, 0.2),
// domain: [0, 0.3],
scheme: "RdBu",
label: "Change in Jobs from 2022 to 2034 (%)",
legend: true,
tickFormat: (d) => `${(d * 100).toFixed(0)}%`
},
caption: caption(
"Data Source: [Powered by Lightcast Data](http://www.lightcast.io)"
),
marks: [
Plot.geo(
states,
Plot.centroid({
tip: false,
// channels: {
// County: (d) => d.properties.name,
// State: (d) => statemap.get(d.id.slice(0, 2)).properties.name
// },
fill: (d) => change2034perc.get(d.id),
// title: (d) => statemap.get(d.id.slice(0, 2)).properties.name
title: (d) => {
const stateName = statemap.get(d.id.slice(0, 2)).properties.name;
const changeLabel = change2034.get(d.id);
const changePercentage = change2034perc.get(d.id);
const jobs2022label = jobs2022.get(d.id);
const jobs2034label = jobs2034.get(d.id);
return `${stateName}\nJobs (2022): ${Math.round(
jobs2022label
).toLocaleString()}\nJobs (2034): ${Math.round(
jobs2034label
).toLocaleString()}\nChange: ${Math.round(
changeLabel
).toLocaleString()}\n Percentage Change: ${(
changePercentage * 100
).toFixed(1)}%`;
}
})
),
Plot.geo(states, { stroke: "grey", strokeWidth: 1 })
]
}),
{
// fill: (d) => d.Variable,
// opacity: 0.5,
stroke: "black",
"stroke-width": "3px"
// stroke: (d) => d.Variable
}
);
}
Insert cell
embed = (url, {height = 400} = {}) => {
const iframe = html`<iframe width="100%" frameborder="0" src="${url}"></iframe>`;
// The Embedly protocol is to send the height as part of a stringified object.
// In this example, the resize message is the only message being sent; however,
// the checks are good practice, lest we try to interpret unrelated messages as
// resize events.
function onMessage(msg) {
let {data} = msg;

if (msg.source === iframe.contentWindow && typeof data === "string") {
try {
// Try to parse
data = JSON.parse(data);
} catch {
// The message wasn't valid JSON, so it must not be our resize event
return;
}
}

// Make sure it's the resize event
if (data.context === "iframe.resize") {
const {height} = data;
iframe.style.height = height + "px";
}
}

// Attach our listener for the message from the iframe
window.addEventListener("message", onMessage);
return iframe;
}
Insert cell
us = FileAttachment("counties-albers-10m.json").json()
Insert cell
Insert cell
Insert cell
statemesh = topojson.mesh(us, us.objects.states, (a, b) => a !== b)
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
hierarchy = createHierarchy(data)
Insert cell
{
const hierarchy = createHierarchy(data);

// Create pack layout
const width = 800;
const height = 800;

const pack = d3.pack().size([width, height]).padding(3);

const root = pack(hierarchy);

// Prepare data for plotting
const circles = root.descendants().map((d) => ({
x: d.x,
y: d.y,
r: d.r,
depth: d.depth,
data: d.data
}));

// Create the plot
return Plot.plot({
width,
height,
margin: 1,
style: {
fontFamily: "sans-serif",
fontSize: 10
},
marks: [
Plot.dot(circles, {
x: "x",
y: "y",
r: "r",
fill: (d) => d3.schemeCategory10[d.depth],
fillOpacity: 0.7,
stroke: "#ccc",
title: (d) =>
`${d.data.domain}\nSOC: ${d.data.soc}\nJobs: ${d.data.jobs}`
}),
Plot.text(circles, {
x: "x",
y: "y",
text: (d) => d.data.domain,
fontSize: (d) => Math.max(8, Math.min(2 * d.r, 24)),
clip: true,
overflow: "hidden",
width: (d) => d.r * 2,
height: (d) => d.r * 2
})
]
});
}
Insert cell
import {Sunburst} from "@d3/sunburst"
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more