Public
Edited
Oct 28, 2023
Insert cell
Insert cell
Insert cell
chart = {
// Specify the chart’s dimensions.
const width = 928;
const height = 500;
const marginTop = 10;
const marginRight = 10;
const marginBottom = 20;
const marginLeft = 40;

// Determine the series that need to be stacked.
const series = d3
.stack()
.keys(d3.union(data.map((d) => d.age))) // distinct series keys, in input order
.value(([, D], key) => D.get(key).population)(
// get value for each series key and stack
d3.index(
data,
(d) => d.state,
(d) => d.age
)
); // group by stack then series key

// Prepare the scales for positional and color encodings.
const x = d3
.scaleBand()
.domain(
d3.groupSort(
data,
(D) => -d3.sum(D, (d) => d.population),
(d) => d.state
)
)
.range([marginLeft, width - marginRight])
.padding(0.1);

const y = d3
.scaleLinear()
.domain([0, d3.max(series, (d) => d3.max(d, (d) => d[1]))])
.rangeRound([height - marginBottom, marginTop]);

const color = d3
.scaleOrdinal()
.domain(series.map((d) => d.key))
.range(d3.schemeSpectral[series.length])
.unknown("#ccc");

// A function to format the value in the tooltip.
const formatValue = (x) => (isNaN(x) ? "N/A" : x.toLocaleString("en"));

// Create the SVG container.
const svg = d3
.create("svg")
.attr("width", width)
.attr("height", height)
.attr("viewBox", [0, 0, width, height])
.attr("style", "max-width: 100%; height: auto;");

// Append a group for each series, and a rect for each element in the series.
svg
.append("g")
.selectAll()
.data(series)
.join("g")
.attr("fill", (d) => color(d.key))
.selectAll("rect")
.data((D) => D.map((d) => ((d.key = D.key), d)))
.join("rect")
.attr("x", (d) => x(d.data[0]))
.attr("y", (d) => y(d[1]))
.attr("height", (d) => y(d[0]) - y(d[1]))
.attr("width", x.bandwidth())
.append("title")
.text(
(d) =>
`${d.data[0]} ${d.key}\n${formatValue(d.data[1].get(d.key).population)}`
);

// Append the horizontal axis.
svg
.append("g")
.attr("transform", `translate(0,${height - marginBottom})`)
.call(d3.axisBottom(x).tickSizeOuter(0))
.call((g) => g.selectAll(".domain").remove());

// Append the vertical axis.
svg
.append("g")
.attr("transform", `translate(${marginLeft},0)`)
.call(d3.axisLeft(y).ticks(null, "s"))
.call((g) => g.selectAll(".domain").remove());

// Return the chart with the color scale as a property (for the legend).
return Object.assign(svg.node(), { scales: { color } });
}
Insert cell
data = {
const data = await FileAttachment("us-population-state-age.csv").csv({typed: true});
return data.columns.slice(1).flatMap((age) => data.map((d) => ({state: d.name, age, population: d[age]})));
}
Insert cell
import {legend} from "@d3/color-legend"
Insert cell
Insert cell
Plot.plot({
y: {transform: (d) => d / 1e6},
color: {scheme: "spectral"},
marks: [Plot.barY(data, {x: "state", y: "population", fill: "age", sort: {color: null, x: "-y"}})]
})
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more