Public
Edited
Oct 3, 2024
5 stars
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
sports = ['rowing','volleyball','gymnastics']
Insert cell
olympians_subset = olympians.filter(d=>sports.includes(d.sport) && ['USA','BRA','RUS','CHI'].includes(d.nationality))
Insert cell
Insert cell
table = aq.from(olympians_subset)
Insert cell
Insert cell
results = table
//set up dynamic parameter, map to Observable input selectedGrouping
.params(
{ group_var: selectedGrouping}
)
//rename x axis variable to "name" and grouping variable to "group"
.rename({sport: 'name'})
//derive similar to R dplyr mutate, use it to create a new group variable, map to parameter
.derive({group: (d, $)=> d[$.group_var]})
//group by x axis variable ("name") and your grouping (e.g. sex)
.groupby(['name','group'])
//create aggregated variable (y) with rollup calc e.g. mean
.rollup({
y: d=> op.round(op.mean(d.weight) * 10) / 10
})
//group again by your grouping variable, create nested array with array_agg
.groupby('group')
.rollup({
data: d => op.array_agg(op.row_object())
})
//rename grouping variable
.rename({group: 'name'})
.objects();
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Highcharts.chart('plot', {
chart: {
type: 'column'
},
title: {
text: 'Average Olympain Weight by Sport',
align: 'left'
},
xAxis: {
type: 'category'
},
yAxis: {
title: {
text: 'Weight (kg)'
}
},
plotOptions: {
column: {
dataLabels: {enabled: true}
}
},
series: results
})
Insert cell
test = [{month: 'Jan', group:'A', y: 2}, {month: 'Mar', group: 'A', y: 4},{month: 'Jun', group: 'B', y: 5}]
Insert cell
months = [{'month': 'Jan'},{'month':'Feb'}, {'month': 'Mar'}, {'month': 'Apr'}, {'month': 'May'}, {'month': 'Jun'}]
Insert cell
group = [...new Set(test.map(d => d.group))];

Insert cell
aq.from(months)
.join_left((
aq.from(test)
.groupby(['month'])
.rollup({y: d=> aq.op.sum(d.y)})
))
.derive({
y: d=> d.y >0 ? d.y : 0
})
.objects()
Insert cell
generateDateSequence('2023-08-01','2023-10-23','week')
Insert cell
function generateDateSequence(startDate, endDate, interval) {
const result = [];
let currentDate = new Date(startDate);
const finalDate = new Date(endDate);

// Function to set the date to the next Monday if the interval is 'week'
function moveToMonday(date) {
const dayOfWeek = date.getDay();
const diff = (dayOfWeek === 0 ? 7 : dayOfWeek) - 1; // Move back to previous Monday
date.setDate(date.getDate() - diff);
}

if (interval === 'week') {
moveToMonday(currentDate);
}

while (currentDate <= finalDate) {
result.push(new Date(currentDate)); // Push a copy of the current date

// Increment based on the interval
if (interval === 'day') {
currentDate.setDate(currentDate.getDate() + 1);
} else if (interval === 'week') {
currentDate.setDate(currentDate.getDate() + 7);
} else if (interval === 'month') {
currentDate.setMonth(currentDate.getMonth() + 1);
}
}

return result.map(date => ({
date: new Date(date)
}))
}
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more