Public
Edited
Jul 18, 2023
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
// Access Adélie data here:
adelie = d3.csv("https://portal.edirepository.org/nis/dataviewer?packageid=knb-lter-pal.219.5&entityid=002f3893385f710df69eeebe893144ff", d3.autoType)
Insert cell
// Access chinstrap data here:
chinstrap = d3.csv("https://portal.edirepository.org/nis/dataviewer?packageid=knb-lter-pal.221.8&entityid=fe853aa8f7a59aa84cdd3197619ef462", d3.autoType)
Insert cell
Insert cell
Insert cell
// Make combined version, penguinsCombo, here
penguinsCombo = adelie.concat(gentoo,chinstrap)
Insert cell
Insert cell
Insert cell
Insert cell
// Create the wrangled version of penguins here:
// using map method
penguins = penguinsCombo.map(d => ({
species: d.Species.split(" ")[0],
island: d.Island,
sex: d.Sex== null || d.Sex == "." ? null : d.Sex.toLowerCase(), //if null or . character then return ? null, else just Sex
bill_length_mm: d["Culmen Length (mm)"],
bill_depth_mm: d["Culmen Depth (mm)"],
body_mass_g: d["Body Mass (g)"],
flipper_length_mm: d["Flipper Length (mm)"]
}))
Insert cell
Insert cell
// penguins = penguinsKeyCopy
Insert cell
Insert cell
import {chart} from "@d3/zoomable-sunburst"
Insert cell
chart
Insert cell
Insert cell
Insert cell
import {aq, op} from "@uwdata/arquero"
Insert cell
Insert cell
// Convert your array of objects to an Arquero table here:
penguinsTable = aq.from(penguins) // if you add .view() then variable not defined
Insert cell
penguinsTable.view()
Insert cell
Insert cell
// Write Arquero code to perform the steps above here:
penguinsTable
.filter((d) => d.sex =="female")
.select("species","bill_depth_mm","bill_length_mm")
.derive({bill_ratio: (d) => d.bill_length_mm/ d.bill_depth_mm})
.groupby("species")
.rollup({mean_bill_ratio: d => op.mean(d.bill_ratio)})
.view()
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
penguins
X
bill_length_mm
Y
bill_depth_mm
Color
species
Size
Facet X
Facet Y
Mark
Auto
Type Chart, then Shift-Enter. Ctrl-space for more options.

Insert cell
Insert cell
Plot.plot({
color: { legend: true },
marks: [
Plot.dot(penguins, {
x: "bill_length_mm",
y: "bill_depth_mm",
fill: "species", // sets fill instead of outer circle
stroke: "species",
tip: true, // add tool tips
r: "body_mass_g", // r for radius
opacity: 0.5 // 0 is transparent to 1
}),
Plot.frame() // frame around graph
],
// global adjustments
color: {range: ["teal","darkorange","orchid"]},
r: {domain: d3.extent(penguins.map((d) => d.body_mass_g)), range: [1,10]} // set the scale of this range
})
Insert cell
// Make a copy of penguins here, stored as data:

Insert cell
import {PlotMatrix} with {data} from "@observablehq/autoplot-matrix"
Insert cell
Insert cell
data = penguins // set data variable for using PlotMatrix call
Insert cell
// Make the pairplot with PlotMatrix here:
PlotMatrix(data)
Insert cell
Insert cell
Insert cell
penguins
X
body_mass_g
Y
Color
species
Size
Facet X
Facet Y
species
Mark
Auto
Type Chart, then Shift-Enter. Ctrl-space for more options.

Insert cell
Insert cell
Plot.plot({
color: { legend: true },
marks: [
Plot.frame({ strokeOpacity: 0.1 }),
Plot.rectY(
penguins,
Plot.binX(
{ y: "count" },
{ fy: "species", x: choosePenguinVariable, fill: "species", tip: true }
)
),
Plot.ruleY([0])
]
})
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
import {scale} from "@chrispahm/hierarchical-clustering"
Insert cell
// Make a subset of penguins with complete cases (filter out values where bill length is null):
penguinsComplete = penguins.filter((d) => d.bill_length_mm !== null)// && d.sex == "female")
Insert cell
// Create a scaled version of the values (non-numeric will be NaN, which is fine..):
penguinsScale = scale(penguinsComplete)
Insert cell
// Convert the array of objects to an array of arrays:
penguinsArray = penguinsScale.map(
(d) => [d.bill_length_mm, d.bill_depth_mm, d.body_mass_g, d.flipper_length_mm]
)
Insert cell
Insert cell
// cheat to skip above steps
// import {penguinsArray} from "@observablehq/ds-workflows-in-js-session-2-key"
Insert cell
Insert cell
Insert cell
// Use ml.js KMeans() method to perform k-means clustering for k centroids:
penguinsClusters = ML.KMeans(penguinsArray, 3)
Insert cell
Insert cell
// Combine the cluster values for each element with the original female penguins data:
penguinsKmeans = penguinsComplete.map((d,i) => ({...d, clusterNo: penguinsClusters.clusters[i]}))
Insert cell
Insert cell
myChart = Plot.plot({ // Remember to name if you want to use embeds!
marks: [
Plot.text(penguinsKmeans, {
x: "body_mass_g",
y: "flipper_length_mm",
text: "clusterNo",
fontSize: "15px",
fontWeight: 500,
fill: "species",
tip: true
})
],
color: { legend: true }
})
Insert cell
clusterCounts = d3.rollup(penguinsKmeans, v => v.length, d => d.species, d => d.clusterNo)
Insert cell
Insert cell
Insert cell
ML = require("https://www.lactame.com/lib/ml/6.0.0/ml.min.js")
Insert cell
import {penguinsKeyCopy} from "@observablehq/ds-workflows-in-js-session-2-key"
Insert cell
noUse = FileAttachment("fiddlerCrabBodySize.csv") // Note: this is only added here so that the file is attached in the forked version
Insert cell

Purpose-built for displays of data

Observable is your go-to platform for exploring data and creating expressive data visualizations. Use reactive JavaScript notebooks for prototyping and a collaborative canvas for visual data exploration and dashboard creation.
Learn more