class Trisegment_2 {
using Trisegment_2_ptr = std::shared_ptr<Trisegment>;
template<class K, typename Segment>
class Trisegment_2
{
typedef Trisegment_2<K, Segment> Self;
public:
typedef Trisegment_2_ptr<Self> Self_ptr ;
typedef typename K::FT FT ;
Trisegment_2 ( Segment const& aE0
, FT const& aW0
, Segment const& aE1
, FT const& aW1
, Segment const& aE2
, FT const& aW2
, Trisegment_collinearity aCollinearity
, std::size_t aID
)
: mID(aID)
{
mCollinearity = aCollinearity ;
mE[0] = aE0 ;
mE[1] = aE1 ;
mE[2] = aE2 ;
mW[0] = aW0 ;
mW[1] = aW1 ;
mW[2] = aW2 ;
switch ( mCollinearity )
{
case TRISEGMENT_COLLINEARITY_01:
mCSIdx=0; mNCSIdx=2; break ;
case TRISEGMENT_COLLINEARITY_12:
mCSIdx=1; mNCSIdx=0; break ;
case TRISEGMENT_COLLINEARITY_02:
mCSIdx=0; mNCSIdx=1; break ;
case TRISEGMENT_COLLINEARITY_ALL:
mCSIdx = mNCSIdx = (std::numeric_limits<unsigned>::max)(); break ;
case TRISEGMENT_COLLINEARITY_NONE:
mCSIdx = mNCSIdx = (std::numeric_limits<unsigned>::max)(); break ;
}
}
std::size_t& id() { return mID; }
const std::size_t& id() const { return mID; }
static Trisegment_2 null() { return Self_ptr() ; }
Trisegment_collinearity collinearity() const { return mCollinearity ; }
Segment const& e( unsigned idx ) const { CGAL_precondition(idx<3) ; return mE[idx] ; }
Segment const& e0() const { return e(0) ; }
Segment const& e1() const { return e(1) ; }
Segment const& e2() const { return e(2) ; }
FT const& w( unsigned idx ) const { CGAL_precondition(idx<3) ; return mW[idx] ; }
FT const& w0() const { return w(0) ; }
FT const& w1() const { return w(1) ; }
FT const& w2() const { return w(2) ; }
// If 2 out of the 3 edges are collinear they can be reclassified as 1 collinear edge (any of the 2) and 1 non-collinear.
// These methods returns the edges according to that classification.
// PRECONDITION: Exactly 2 out of 3 edges are collinear
Segment const& collinear_edge () const { return e(mCSIdx) ; }
Segment const& non_collinear_edge() const { return e(mNCSIdx) ; }
Segment const& other_collinear_edge() const
{
switch ( mCollinearity )
{
case TRISEGMENT_COLLINEARITY_01:
return e(1);
case TRISEGMENT_COLLINEARITY_12:
return e(2);
case TRISEGMENT_COLLINEARITY_02:
return e(2);
default:
CGAL_assertion(false);
return e(0); // arbitrary, meaningless value because a const& is expected
}
}
FT const& collinear_edge_weight() const { return w(mCSIdx) ; }
FT const& non_collinear_edge_weight() const { return w(mNCSIdx) ; }
FT const& other_collinear_edge_weight() const
{
switch ( mCollinearity )
{
case TRISEGMENT_COLLINEARITY_01:
return w(1);
case TRISEGMENT_COLLINEARITY_12:
return w(2);
case TRISEGMENT_COLLINEARITY_02:
return w(2);
default:
CGAL_assertion(false);
return w(0); // arbitrary, meaningless value because a const& is expected
}
}
Self_ptr const& child_l() const { return mChildL ; }
Self_ptr const& child_r() const { return mChildR ; }
Self_ptr const& child_t() const { return mChildT ; }
void set_child_l( Self_ptr const& aChild ) { mChildL = aChild ; }
void set_child_r( Self_ptr const& aChild ) { mChildR = aChild ; }
void set_child_t( Self_ptr const& aChild ) { mChildT = aChild ; }
enum SEED_ID { LEFT, RIGHT, THIRD } ;
// Indicates which of the seeds is collinear for a normal collinearity case.
// PRECONDITION: The collinearity is normal.
SEED_ID degenerate_seed_id() const
{
Trisegment_collinearity c = collinearity();
return c == TRISEGMENT_COLLINEARITY_01 ? LEFT : c == TRISEGMENT_COLLINEARITY_12 ? RIGHT : THIRD ;
}
static void print ( std::ostream& os, Self const& aTri, int aDepth )
{
const std::string lPadding = std::string(2 * aDepth, ' ');
os << lPadding << "[&: " << &aTri << " ID: " << aTri.id() << "\n"
<< lPadding << "\tE" << aTri.e0().mID << " E" << aTri.e1().mID << " E" << aTri.e2().mID << "\n"
<< lPadding << "\t" << s2str(aTri.e0()) << " w = " << n2str(aTri.w0()) << ";" << "\n"
<< lPadding << "\t" << s2str(aTri.e1()) << " w = " << n2str(aTri.w1()) << ";" << "\n"
<< lPadding << "\t" << s2str(aTri.e2()) << " w = " << n2str(aTri.w2()) << ";" << "\n"
<< lPadding << "\tCollinearity: " << trisegment_collinearity_to_string(aTri.collinearity()) << "\n"
<< lPadding << "]\n" << std::flush;
}
static void recursive_print ( std::ostream& os, Self_ptr const& aTriPtr, int aDepth )
{
const std::string lPadding = std::string(2 * aDepth, ' ');
os << "\n" ;
if ( aTriPtr )
{
print(os, *aTriPtr, aDepth);
if ( aTriPtr->child_l() )
{
os << lPadding << "left child:" ;
recursive_print(os,aTriPtr->child_l(),aDepth+1);
}
if ( aTriPtr->child_r() )
{
os << lPadding << "right child:" ;
recursive_print(os,aTriPtr->child_r(),aDepth+1);
}
if ( aTriPtr->child_t() )
{
os << lPadding << "third child:" ;
recursive_print(os,aTriPtr->child_t(),aDepth+1);
}
}
else
{
os << "{null}" ;
}
}
friend std::ostream& operator << ( std::ostream& os, Self const& aTrisegment )
{
print(os, aTrisegment, 0);
return os ;
}
friend std::ostream& operator << ( std::ostream& os, Self_ptr const& aTriPtr )
{
if(aTriPtr)
print(os, *aTriPtr, 0);
else
os << "{null}" ;
return os ;
}
private :
std::size_t mID;
Segment mE[3];
FT mW[3];
Trisegment_collinearity mCollinearity ;
unsigned mCSIdx, mNCSIdx ;
Self_ptr mChildL ;
Self_ptr mChildR ;
// this is the potential child of e2-e0, if it exists. It is used only in the configuration
// of e0 and e2 collinear as the common child gives where the bisector starts (as it is not
// necessarily the middle of the gap between e2 and e0).
Self_ptr mChildT ;
} ;
} // end namespace CGAL
#endif // CGAL_SLS_TRISEGMENT_H