Public
Edited
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
biking = [{day: "Monday", miles: 6.2, time_hr: 0.53},
{day: "Tuesday", miles: 10.0, time_hr: 1.02},
{day: "Wednesday", miles: 4.9, time_hr: 0.48},
{day: "Thursday", miles: 0, time_hr: 0},
{day: "Friday", miles: 18.5, time_hr: 1.59},
{day: "Saturday", miles: 7.3, time_hr: 0.86},
{day: "Sunday", miles: 0, time_hr: 0}]

Insert cell
Insert cell
// Find the miles biked on Friday:

// Alternatively: biking[biking.map(d => d.day).indexOf("Friday")].miles
Insert cell
Insert cell
// For each day, find the average biking speed.

Insert cell
Insert cell
Insert cell
Insert cell
// Only keep objects (rows) where miles is greater than 10:

Insert cell
Insert cell
// Keep rows for Saturday and Monday:

Insert cell
Insert cell
// Keep rows where miles is less than 10 AND time_hr is less than 0.5:

Insert cell
Insert cell
// Keep rows *except* for Thursday:

Insert cell
Insert cell
Insert cell
// Keep all existing properties; add a new one named 'km' with miles converted to kilometers;

Insert cell
Insert cell
Insert cell
carData
Type Table, then Shift-Enter. Ctrl-space for more options.

Insert cell
Insert cell
carTable = aq.from(carData)
Insert cell
Insert cell
// Add your data wrangling (using Arquero) here:

Insert cell
Insert cell
Insert cell
Insert cell
world_bank_data.csv
Type Table, then Shift-Enter. Ctrl-space for more options.

Insert cell
Insert cell
// Use Array map and filter to do the wrangling steps above, storing the output as wb2019:

Insert cell
Insert cell
Insert cell
wbTable = aq.from(wb)
Insert cell
Insert cell
// Use Arquero verbs to do the same wrangling steps:

Insert cell
Insert cell
Insert cell
// Create a chart of the top 10 CO2 emitting countries in 2019 (using the wb2019 array created above)

Insert cell
Insert cell
Insert cell
Insert cell
carData = cars
Insert cell
import {aq, op} from "@uwdata/arquero"
Insert cell
import { showMe } from "@observablehq/show-me"
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more