Published
Edited
Apr 14, 2021
12 stars
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
// The initial temperature distribution
// This can be edited to experiment with its effect on the results,
// though its values should remain between zero and one, as I haven't
// done anything to scale it.

g = r => 1
Insert cell
// The number of terms in the approximating sum
// The number of terms required for a good approximation depends strongly
// on the initial temperature distribution. The primary choice that's
// illustrated here with g(r) = 1 requires a lot of terms, since it's not
// consistent with the boundary condition

N = 100
Insert cell
// The eigenfunctions
function R(n, r) {
return Math.sin(n * Math.PI * r) / r;
}
Insert cell
// This computation checks that the normalized eigenfunctions are,
// indeed, orthogonal with respect to an inner product. The diagonal
// indicates that the squared-norms are all 1/2
d3
.range(1, 9)
.map(i =>
d3
.range(1, 9)
.map(j => integrate(x => x ** 2 * R(i, x) * R(j, x), 1e-12, 1).toFixed(5))
)
Insert cell
// The coeficients in the approximation
c = d3
.range(1, N)
.map(n => integrate(r => 2 * g(r) * R(n, r) * r ** 2, 1e-12, 1))
Insert cell
// The nth approximation to g using a linear combinations of the eigenfunctions:
function g_approx(n, r) {
return d3.sum(d3.range(0, n).map(n => c[n] * R(n + 1, r)));
}
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
// The solution
function u(t, r) {
return d3.sum(
d3
.range(c.length)
.map(n => c[n] * Math.exp(-t * Math.PI ** 2 * (n + 1) ** 2) * R(n + 1, r))
);
}
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
function rgb_to_r_g_b(rgb_string) {
return String(
rgb_string
.split('(')[1]
.split(')')[0]
.split(',')
.map(x => String(parseFloat(x) / 255))
).replace(/,/g, ' ');
}
Insert cell
function integrate(ff, a, b) {
return adaptiveSimpson(ff, a, b, {
tolerance: 1e-11,
maxDepth: 8,
minDepth: 7
});
}
Insert cell
Insert cell
import { adaptiveSimpson } from '@rreusser/integration@3056'
Insert cell
import { funplot } from '@mbostock/funplot'
Insert cell
import { Scrubber } from '@mbostock/scrubber'
Insert cell
import { Range, Radio, Toggle } from '@observablehq/inputs'
Insert cell
d3 = require('d3-selection@2', 'd3-array@2', 'd3-scale-chromatic@2', 'd3-format@2')
Insert cell
x3dom = require('x3dom').catch(() => window['x3dom'])
Insert cell
html`<style>
canvas {
outline: none
}
</style>`
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more