Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
biking = [
{ day: "Monday", miles: 6.2, time_hr: 0.53 },
{ day: "Tuesday", miles: 10.0, time_hr: 1.02 },
{ day: "Wednesday", miles: 4.9, time_hr: 0.48 },
{ day: "Thursday", miles: 0, time_hr: 0 },
{ day: "Friday", miles: 18.5, time_hr: 1.59 },
{ day: "Saturday", miles: 7.3, time_hr: 0.86 },
{ day: "Sunday", miles: 0, time_hr: 0 }
]
Insert cell
Insert cell
biking
Insert cell
// Find the miles biked on Friday:

milesFriday1 = biking[biking.map(d => d.day).indexOf("Friday")].miles


Insert cell
milesFriday2 = biking.filter(d => d.day === "Friday")[0].miles
Insert cell
Insert cell
// For each day, find the average biking speed.
avgSpeed = biking.map(d => ({
day: d.day,
avg: d.time_hr === 0 ? 0 : `${(d.miles/d.time_hr).toFixed(2)} mph`,
}))
Insert cell
Insert cell
Insert cell
Insert cell
// Only keep objects (rows) where miles is greater than 10:
biking.filter(d => d.miles > 10)
Insert cell
Insert cell
// Keep rows for Saturday and Monday:
biking.filter(d => d.day === "Saturday" || d.day === "Monday")
Insert cell
Insert cell
// Keep rows where miles is less than 10 AND time_hr is less than 0.5:
biking.filter(d => d.miles < 10 && d.time_hr < 0.5)
Insert cell
Insert cell
// Keep rows *except* for Thursday:
biking.filter(d => d.day !== "Thursday")
Insert cell
Insert cell
Insert cell
// Keep all existing properties; add a new one named 'km' with miles converted to kilometers;

biking.map(d => ({
...d,
km: parseFloat((d.miles * 1.61).toFixed(3))
}))
Insert cell
Insert cell
Insert cell
carData
Type Table, then Shift-Enter. Ctrl-space for more options.

Insert cell
Insert cell
carTable = aq.from(carData)
Insert cell
Insert cell
// Add your data wrangling (using Arquero) here:
carTable
.select("name", "economy (mpg)", "cylinders", "weight (lb)")
.filter((d) => d.cylinders >= 5)
.view()
Insert cell
Insert cell
Insert cell
Insert cell
world_bank_data.csv
Type Table, then Shift-Enter. Ctrl-space for more options.

Insert cell
Insert cell
wb
Insert cell
// Use Array map and filter to do the wrangling steps above, storing the output as wb2019:
wb2019 = wb
.map(({ country, year, co2, region }) => ({
country,
year,
co2,
region,
co2_thousands: co2 / 1000
}))
.filter((d) => d.year === 2019)
Insert cell
Insert cell
Insert cell
wbTable = aq.from(wb)
Insert cell
Insert cell
// Use Arquero verbs to do the same wrangling steps:
wbTable.view()
Insert cell
wbEAPArquero = wbTable
.select("country", "year", "co2", "region")
.derive({ co2_thousands: (d) => d.co2 / 1000 })
.filter((d) => d.year == 2019)
.view()
Insert cell
Insert cell
Insert cell
wb2019
Insert cell
// Create a chart of the top 10 CO2 emitting countries in 2019 (using the wb2019 array created above)
Plot.plot({
marginLeft: 200,
marks: [
Plot.barX(wb2019, {
x: (d) => d.co2 / 1e6,
y: "country",
fill: "blueviolet",
stroke: "gray",
sort: { y: "x", _reverse: true, limit: 680 }
})
]
})
Insert cell
Plot.plot({
marginLeft: 200,
x: { domain: [0, 12], grid: true, label: "CO2" },
marks: [
Plot.barX(wb2019, {
x: (d) => d.co2 / 1e6,
y: "country",
fill: "blueviolet",
stroke: "gray",
sort: { y: "x", reverse: true, limit: 10 }
}),
Plot.text(wb2019, {
x: (d) => d.co2 / 1e6,
y: "country",
text: (d) => d.co2 / 1e6,
dx: 2,
textAnchor: "start"
}),
Plot.ruleX([0])
]
})
Insert cell
Insert cell
Insert cell
Insert cell
carData = cars
Insert cell
import {aq, op} from "@uwdata/arquero"
Insert cell
import { showMe } from "@observablehq/show-me"
Insert cell

Purpose-built for displays of data

Observable is your go-to platform for exploring data and creating expressive data visualizations. Use reactive JavaScript notebooks for prototyping and a collaborative canvas for visual data exploration and dashboard creation.
Learn more