Public
Edited
Aug 25, 2023
2 forks
12 stars
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
tornados.csv
Type Table, then Shift-Enter. Ctrl-space for more options.

Insert cell
tornados
SELECT t. *
,CAST(FLOOR(yr / 10) * 10 AS INTEGER) AS decade
,CASE WHEN CAST(FLOOR(yr / 10) * 10 AS INTEGER)<=1970 THEN 1
WHEN CAST(FLOOR(yr / 10) * 10 AS INTEGER)<=2000 THEN 2
ELSE 3 END AS row_index
,CASE
WHEN CAST(FLOOR(yr / 10) * 10 AS INTEGER) IN (1950,1980, 2010) THEN 1
WHEN CAST(FLOOR(yr / 10) * 10 AS INTEGER) IN (1960,1990, 2020) THEN 2
WHEN CAST(FLOOR(yr / 10) * 10 AS INTEGER) IN (1970,2000) THEN 3
ELSE 4 end as col_index
FROM tornados t
WHERE yr>=${form.minYear} and yr<=${form.maxYear}

Insert cell
filtered
SELECT distinct SUBSTRING(cast(decade as char),1,4) || 's' as decade, col_index, row_index from filtered
Insert cell
tornados
SELECT
year as year
, month as month
, COALESCE(tornados,0) as tornados
FROM
(SELECT distinct mo as month from tornados) m
CROSS JOIN
(SELECT distinct yr as year from tornados where yr>=1992) y
LEFT JOIN
(SELECT yr, mo, count(*) as tornados from tornados group by 1,2) t on t.yr=y.year and m.month = t.mo
ORDER BY year, month
Insert cell
Insert cell
usGeo = FileAttachment("us-geo.json").json()
Insert cell
cities = [
{ name: "Houston", lat: 29.7604, lon: -95.3698, color:'black'},
{ name: "Tampa", lat: 27.9506, lon: -82.4572, color:'black'},
{name: "Denver", lat: 39.7392,lon: -104.9903, color:'black'},
{name: "Oklahoma City", lat:35.4676, lon:-97.5164, color:'white'},
{name: "Jackson", lat:32.2988, lon:-90.1848, color:'black'},
{name:"Dallas", lat:32.7767, lon:-96.7970, color:'black'},
{name:"Tulia", lat:34.5359, lon:-101.7585, color:'black'},
{name:"Great Bend", lat:38.3645, lon:-98.7648, color:'black'}
];
Insert cell
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more